已知,点.(Ⅰ)若,求函数的单调递增区间;(Ⅱ)若函数的导函数满足:当时,有恒成立,求函数的解析表达式;(Ⅲ)若,函数在和处取得极值,且,证明: 与不可能垂直。
已知曲线的极坐标方程为,以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,并与极坐标系取相同的单位长度,直线l的参数方程为( 为参数),求直线l被曲线截得的线段长度.
已知矩阵M =,N =,试求曲线在矩阵MN变换下的函数解析式.
在数列中,,且对任意的,成等比数列,其公比为.(1)若=2(),求;(2)若对任意的,,,成等差数列,其公差为,设.①求证:成等差数列,并指出其公差;②若=2,试求数列的前项的和.
已知函数(1)求函数在点处的切线方程;(2)求函数单调递增区间;(3)若存在,使得是自然对数的底数),求实数的取值范围.
已知向量.(1)若,且,求的值;(2)定义函数,求函数的单调递减区间;并求当 时,函数的值域.