对于正整数 n ⩾ 2 ,用 T n 表示关于 x 的一元二次方程 x 2 + 2 a x + b = 0 有实数根的有序数组 ( a , b ) 的组数,其中 a , b ∈ { 1 , 2 , … , n } ( a 和 b 可以相等);对于随机选取的 a , b ∈ { 1 , 2 , … , n } ( a 和 b 可以相等),记 P n 为关于 x 的一元二次方程 x 2 + 2 a x + b = 0 有实数根的概率. (1)求 T n 2 和 P n 2 ; (2)求证:对任意正整数 n ⩾ 2 ,有 P n > 1 - 1 n 。
(1)已知函数,过点P的直线与曲线相切,求的方程; (2)设,当时,在1,4上的最小值为,求在该区间上的最大值.
已知函数其中在中,分别是角的对边,且. (1)求角A; (2)若,,求的面积.
学校或班级举行活动,通常需要张贴海报进行宣传。现让你设计一张如图所示的竖向张贴的海报,要求版心面积为128dm2 ,上、下两边各空2dm,左、右两边各空1dm。如何设计海报的尺寸,才能使四周空白面积最小?
已知函数f(x)=(sin2x-cos2x)-2sinxcosx. (1)求f(x)的最小正周期; (2)设x∈[-,],求f(x)的值域和单调递增区间.
已知数列{an}的前n项和,数列{bn}满足b1=1,b3+b7=18,且(n≥2).(1)求数列{an}和{bn}的通项公式;(2)若,求数列{cn}的前n项和Tn.