对于正整数 n ⩾ 2 ,用 T n 表示关于 x 的一元二次方程 x 2 + 2 a x + b = 0 有实数根的有序数组 ( a , b ) 的组数,其中 a , b ∈ { 1 , 2 , … , n } ( a 和 b 可以相等);对于随机选取的 a , b ∈ { 1 , 2 , … , n } ( a 和 b 可以相等),记 P n 为关于 x 的一元二次方程 x 2 + 2 a x + b = 0 有实数根的概率. (1)求 T n 2 和 P n 2 ; (2)求证:对任意正整数 n ⩾ 2 ,有 P n > 1 - 1 n 。
已知数列的前项和,数列满足. (1)求数列的通项; (2)求数列的通项; (3)若,求数列的前项和.
△ABC的内角A、B、C的对边分别为a,b,c,已知 (1)求B; (2)若b=2,求△ABC面积的最大值。
设数列的前项和,数列满足. (1)求数列的通项公式; (2)求数列的前项和.
如图,在中,是边的中点,且,. (1)求的值; (2)求的值.
已知是公差不为零的等差数列,,且成等比数列. (1)求数列的通项公式; (2)求数列的前项和.