(本小题满分14分)已知曲线;(1)由曲线C上任一点E向X轴作垂线,垂足为F,。问:点P的轨迹可能是圆吗?请说明理由;(2)如果直线L的斜率为,且过点,直线L交曲线C于A,B两点,又,求曲线C的方程。
在中,两个定点,的垂心H(三角形三条高线的交点)是AB边上高线CD的中点。(1)求动点C的轨迹方程;(2)斜率为2的直线交动点C的轨迹于P、Q两点,求面积的最大值(O是坐标原点)。
已知数列前项和满足,等差数列满足(1)求数列的通项公式(2)设,数列的前项和为,问的最小正整数n是多少?
已知函数().(1)若的定义域和值域均是,求实数的值;(2)若对任意的,,总有,求实数的取值范围.
已知向量,,函数.(1)求函数的最小正周期和单调增区间;(2)在中,分别是角的对边,R为外接圆的半径,且,,,且,求的值.
若关于的不等式的解集是,的定义域是,若,求实数的取值范围.