甲乙两人连续6年对某县农村鳗鱼养殖业的规模(总产量)进行调查,提供了两个方面的信息,分别得到甲、乙两图:甲调查表明:每个鱼池平均产量从第1年1万只鳗鱼上升到第6年2万只。乙调查表明:全县鱼池总个数由第1年30个减少到第6年10个。请你根据提供的信息说明:(Ⅰ)第2年全县鱼池的个数及全县出产的鳗鱼总数。(Ⅱ)到第6年这个县的鳗鱼养殖业的规模(即总产量)比第1年扩大了还是缩小了?说明理由。(Ⅲ)哪一年的规模(即总产量)最大?说明理由。
如图所示,流程图给出了无穷等差整数列,时,输出的时,输出的(其中d为公差)(I)求数列的通项公式;(II)是否存在最小的正数m,使得成立?若存在,求出m的值,若不存在,请说明理由。
已知(1)求使上是减函数的充要条件;(2)求上的最大值。
AB为圆O的直径,点E、F在圆上,AB//EF,矩形ABCD所在平面与圆O所在平面互相垂直,已知AB=2,BC=EF=1。 (I)求证:BF⊥平面DAF; (II)求ABCD与平面CDEF所成锐二面角的某三角函数值; (III)求多面体ABCDFE的体积。
甲、乙两个同学同时报名参加某重点高校2010年自主招生,高考前自主招生的程序为审核材料和文化测试,只有审核过关后才能参加文化测试,文化测试合格者即可获得自主招生入选资格。已知甲,乙两人审核过关的概率分别为,审核过关后,甲、乙两人文化测试合格的概率分别为(1)求甲,乙两人至少有一人通过审核的概率;(2)设表示甲,乙两人中获得自主招生入选资格的人数,求的数学期望.
已知函数(1)若的最大值和最小值;(2)若的值。