甲乙两人连续6年对某县农村鳗鱼养殖业的规模(总产量)进行调查,提供了两个方面的信息,分别得到甲、乙两图:甲调查表明:每个鱼池平均产量从第1年1万只鳗鱼上升到第6年2万只。乙调查表明:全县鱼池总个数由第1年30个减少到第6年10个。请你根据提供的信息说明:(Ⅰ)第2年全县鱼池的个数及全县出产的鳗鱼总数。(Ⅱ)到第6年这个县的鳗鱼养殖业的规模(即总产量)比第1年扩大了还是缩小了?说明理由。(Ⅲ)哪一年的规模(即总产量)最大?说明理由。
某社区举办防控甲型H7N9流感知识有奖问答比赛,甲、乙、丙三人同时回答一道卫生知识题,三人回答正确与错误互不影响.已知甲回答这题正确的概率是,甲、丙两人都回答错误的概率是,乙、丙两人都回答正确的概率是. (1)求乙、丙两人各自回答这道题正确的概率; (2)用ξ表示回答该题正确的人数,求ξ的分布列和数学期望Eξ.
已知数列{an}满足,n∈N*. (1)求数列{an}的通项公式; (2)设bn=(2n﹣1)an,求数列{bn}的前n项和Sn.
在△ABC中,已知角A、B、C的对边分别为a、b、c.向量=(cosB,cosC),=(b,2a﹣c)且向量与共线. (1)求cosB的值; (2)若b=,求△ABC的面积的最大值.
已知函数,其中a,b∈R (1)当a=3,b=-1时,求函数f(x)的最小值; (2)若曲线y=f(x)在点(e,f(e))处的切线方程为2x-3y-e=0(e=2.71828 为自然对数的底数),求a,b的值; (3)当a>0,且a为常数时,若函数h(x)=x[f(x)+lnx]对任意的x1>x2≥4,总有成立,试用a表示出b的取值范围.
已知椭圆Γ:(a>b>0)经过D(2,0),E(1,)两点. (1)求椭圆Γ的方程; (2)若直线与椭圆Γ交于不同两点A,B,点G是线段AB中点,点O是坐标原点,设射线OG交Γ于点Q,且. ①证明: ②求△AOB的面积.