在平面直角坐标系中,O为坐标原点,已知点,,若点C满足,点C的轨迹与抛物线交于A、B两点.(I)求证:;(II)在轴正半轴上是否存在一定点,使得过点P的任意一条抛物线的弦的长度是原点到该弦中点距离的2倍,若存在,求出m的值;若不存在,请说明理由.
某停车场临时停车按时段收费,收费标准为:每辆汽车一次停车不超过1小时收费6元,超过1小时的部分每小时收费8元(不足1小时的部分按1小时计算).现有甲、乙二人在该停车场临时停车,两人停车都不超过4小时.(1)若甲停车1小时以上且不超过2小时的概率为,停车付费多于14元的概率为,求甲临时停车付费恰为6元的概率;(2)若每人停车的时间在每个时段的可能性相同,求甲、乙二人停车付费之和为36元的概率.
一个袋中有4个大小相同的小球,其中红球1个,白球2个,黑球1个,现从袋中有放回地取球,每次随机取1个.(1)求连续取两次都是白球的概率;(2)若取1个红球记2分,取1个白球记1分,取1个黑球记0分,求连续取两次的分数之和为2的概率.
如图所示的茎叶图记录了甲组3名同学寒假假期中去图书馆A学习的次数和乙组4名同学寒假假期中去图书馆B学习的次数.乙组记录中有一个数据模糊,无法确认,在图中以x表示.(1)如果x=7,求乙组同学去图书馆学习次数的平均数和方差;(2)如果x=9,从学习次数大于8的学生中选2名同学,求选出的2名同学恰好分别在两个图书馆学习且学习的次数和大于20的概率.
现有6道题,其中4道甲类题,2道乙类题,张同学从中任取2道题解答.试求:(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.
函数.(1)若,函数在区间上是单调递增函数,求实数的取值范围;(2)设,若对任意恒成立,求的取值范围.