如图内接于圆,,直线切圆于点,弦相交于点。(1)求证≌;(2)若
设数列{an}(n∈N)满足a0=0,a1=2,且对一切n∈N,有an+2=2an+1-an+2. (1)求数列{an}的通项公式; (2)i当时,令,是数列{bn}的前n项和,求证:
如图,两矩形ABCD、ABEF所在平面互相垂直,DE与平面ABCD及平面所成角分别为30°、45°,M、N分别为DE与DB的中点,且MN=1. (I) 求证:MN⊥平面ABCD (II) 求线段AB的长; (III)求二面角A-DE-B的平面角的正弦值.
已知在△ABC中,角A、B、C所对应的边为a,b,c。 (I)若,求A的值; (II)若cosA=,b=3c,求sinC的值。
某班在联欢会上举行一个抽奖活动,甲箱中有3个红球,2个黑球,乙箱中装有2个红球4个黑球,参加活动者从这两个箱子中分别摸出1个球,如果摸到的都是红球则获奖. (Ⅰ)求每个活动参加者获奖的概率; (Ⅱ)某办公室共有5人,每人抽奖1次,求这5人中至少有3人获奖的概率.
已知:,(为常数). (1)求的最小正周期; (2)在上最大值与最小值之和为3,求的值; (3)求在(2)条件下的单调减区间.