已知 a 是实数,函数 f ( x ) = x ( x - a ) .
(1)求函数 f ( x ) 的单调区间; (2)设 g ( x ) 为 f ( x ) 在区间 [ 0 , 2 ] 上的最小值.
(i)写出 g ( a ) 的表达式;
(ii)求 a 的取值范围,使得 - 6 ≤ g ( a ) ≤ - 2 .
已知向量.(1) 若与夹角为,求;(2) 若,求k的值;(3) 若,求k的值.
若,求值:(1) ; (2)
已知集合(1)若,求,;(2)若,求实数取值的范围.
若函数,当x=2时,函数f(x)有极值.(1)求函数f(x)的解析式;(2)若函数f(x)=k有3个解,求实数k的取值范围。
某工厂生产一种仪器的元件,由于受生产能力和技术水平的限制,会产生一些次品,根据经验知道,其次品率与日产量(万件)之间大体满足关系:(其中为小于6的正常数)(注:次品率=次品数/生产量,如表示每生产10件产品,有1件为次品,其余为合格品),已知每生产1万件合格的仪器可以盈利2万元,但每生产1万件次品将亏损1万元,故厂方希望定出合适的日产量.(1)试将生产这种仪器的元件每天的盈利额(万元)表示为日产量(万件)的函数;(2)当日产量为多少时,可获得最大利润?