已知圆O:x2+y2=2交x轴于A,B两点,曲线C是以AB为长轴,离心率为的椭圆,其左焦点为F.若P是圆O上一点,连结PF,过原点O作直线PF的垂线交椭圆C的左准线于点Q.(1)求椭圆C的标准方程;(2)若点P的坐标为(1,1),求证:直线PQ与圆相切;(3)试探究:当点P在圆O上运动时(不与A、B重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由.
(本小题满分13分) 已知圆的圆心为,一动圆与这两圆都外切。 (1)求动圆圆心的轨迹方程; (2)若过点的直线与(1)中所求轨迹有两个交点、,求的取值范围.
(本小题满分12分) 已知函数 (1)讨论当a > 0时,函数的单调性; (2)若曲线上两点A、B处的切线都与y轴垂直,且线段AB与x轴有 公共点,求实数a的取值范围.
(本小题满分12分) 某批产品成箱包装,每箱4件,一用户在购进该批产品前先取出2箱,再从每箱中任意抽取2件产品进行检验,设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品. (1)求恰有一件抽检的6件产品中二等品的概率; (2)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品被用户拒绝购买的概率.
(本小题满分12分) 如图,某建筑物的基本单元可近似地按以下方法构作:先在地平面内作菱形ABCD,边长为1,∠BAD=60°,再在的上侧,分别以△与△为底面安装上相同的正棱锥P-ABD与Q-CBD,∠APB=90°. (1)求证:PQ⊥BD; (2)求点P到平面QBD的距离.
(本小题满分12分) 已知函数,的最大值是1且其图像经过点 (1)求的解析式; (2)已知,且,求的值.