已知数列中,a1=1,a2=3,且数列的前n项和为Sn,其中(1)求数列和的通项公式;(2)若的表达式.
(本小题满分13分)已知椭圆过点,且与抛物线有一个公共的焦点.(Ⅰ)求椭圆方程;(Ⅱ)过椭圆的右焦点且斜率为的直线与椭圆交于两点,求弦的长;(Ⅲ)以第(Ⅱ)题中的为边作一个等边三角形,求点的坐标.
(本小题满分12分)等差数列中,,其前项和为.等比数列的各项均为正数,,且,.(Ⅰ)求数列与的通项公式;(Ⅱ)求数列的前项和.
(本小题满分12分)如图,将边长为2,有一个锐角为60°的菱形,沿着较短的对角线对折,使得,为的中点.若P为AC上的点,且满足.(Ⅰ)求证:(Ⅱ)求三棱锥的体积;
(本小题满分12分)已知向量m=(sinωx,cosωx),n=(cosωx,-cosωx),若函数f(x)=m·n的图象关于直线对称,其中ω取所有可能值中的最小正数值.(Ⅰ)求的周期和单调递增区间;(Ⅱ)△ABC中,如果f()=,b=4,且asinA-bsinB=sinC(c-b),求△ABC的面积.
(本小题满分12分)一次数学测验,某班50名同学的成绩全部介于90分到140分之间.将成绩结果按如下方式分成五组:第一组,第二组,……,第五组.按上述分组方法得到的频率分布直方图如图所示.(Ⅰ)若成绩大于或等于100分且小于120分认为是良好的,求该校参赛学生在这次数学联赛中成绩良好的人数;(Ⅱ)若从第一、五组中随机取出两个同学的成绩,求这两个成绩差的绝对值大于30分的概率.