在平面直角坐标系中,O为坐标原点,给定两点A(1,0),B(0,—2),点C满足,其中,且,(1)求点C的轨迹方程;(2)设点C的轨迹与双曲线(a>0,b>0)相交于M、N两点,且以MN为直径的圆经过原点,求证:为定值;(3)在(2)的条件下,若双曲线的离心率不大于,求双曲线实轴长的取值范围。
已知直线l经过点P(3,1),且被两平行直线l1:x+y+1=0和l2:x+y+6=0截得的线段之长为5,求直线l的方程.
求经过直线2x+3y+1=0和x-3y+4=0的交点,且垂直于直线3x+4y-7=0的直线方程.
已知两直线l1:ax-by+4=0,l2:(a-1)x+y+b=0,分别求满足下列条件的a、b的值. (1) 直线l1过点(-3,-1),且l1⊥l2; (2) 直线l1与l2平行,且坐标原点到l1、l2的距离相等.
两条直线l1:(m+3)x+2y=5-3m,l2:4x+(5+m)y=16,分别求满足下列条件的m的值. (1) l1与l2相交; (2) l1与l2平行; (3) l1与l2重合; (4) l1与l2垂直.
如图所示,在底面为直角梯形的四棱锥PABCD中,AD∥BC,PD⊥平面ABCD,AD=1,AB=,BC=4. (1)求证:BD⊥PC; (2)求直线AB与平面PDC所成的角; (3)设点E在棱PC上,=λ,若DE∥平面PAB,求λ的值.