判断直线与圆的位置关系.如果相交,求出交点坐标.
(本小题满分14分)在中,角所对的边分别为,角为锐角,且(1)求的值;(2)若,求的最大值。
(本小题满分14分)已知(1)求的值;(2)求的值。
本题共有3个小题,第(1)小题4分,第(2)小题6分,第(3)小题8分已知函数,若在定义域内存在,使得成立,则称为函数的局部对称点.(1)若R且,证明:函数必有局部对称点;(2)若函数在区间内有局部对称点,求实数的取值范围;(3)若函数在R上有局部对称点,求实数的取值范围.
已知数列的前项和为,且,N*(1)求数列的通项公式;(2)已知(N*),记(且),是否存在这样的常数,使得数列是常数列,若存在,求出的值;若不存在,请说明理由.(3)若数列,对于任意的正整数,均有成立,求证:数列是等差数列;
如图,在两块钢板上打孔,用钉帽呈半球形、钉身为圆柱形的铆钉(图1)穿在一起,在没有帽的一端锤打出一个帽,使得与钉帽的大小相等,铆合的两块钢板,成为某种钢结构的配件,其截面图如图2.(单位:mm)(加工中不计损失). (1)若钉身长度是钉帽高度的2倍,求铆钉的表面积;(2)若每块钢板的厚度为mm,求钉身的长度(结果精确到mm).