求满足下列条件的直线方程: (1)过点A(-2,3)、B(4,-1);(2)在x轴、y轴上的截距分别为4、-5.
已知椭圆的左右顶点分别为,离心率. (1)求椭圆的方程; (2)若点为曲线:上任一点(点不同于),直线与直线交于点,为线段的中点,试判断直线与曲线的位置关系,并证明你的结论.
已知正项数列中,,前n项和为,当时,有.(1)求数列的通项公式; (2)记是数列的前项和,若的等比中项,求.
如图1,在直角梯形中,,,且. 现以为一边向梯形外作正方形,然后沿边将正方形翻折,使平面与平面垂直,为的中点,如图2. (1)求证:∥平面; (2)求证:; (3)求点到平面的距离.
某校高三(1)班共有名学生,他们每天自主学习的时间全部在分钟到分钟之间,按他们学习时间的长短分个组统计,得到如下频率分布表:
(1)求分布表中,的值; (2)王老师为完成一项研究,按学习时间用分层抽样的方法从这名学生中抽取名进行研究,问应抽取多少名第一组的学生? (3)已知第一组学生中男、女生人数相同,在(2)的条件下抽取的第一组学生中,既有男生又有女生的概率是多少?
已知函数 (1)求的值; (2)若,且,求.