已知点M(x1,f(x1))是函数f(x)=,x∈(0,+∞)图象C上的一点,记曲线C在点M处的切线为l.(1)求切线l的方程;(2)设l与x轴,y轴的交点分别为A、B,求△AOB周长的最小值.
已知函数(e为自然对数的底数),a>0. (1)若函数恰有一个零点,证明:; (2)若≥0对任意x∈R恒成立,求实数a的取值集合.
记公差不为0的等差数列的前项和为,S3=9,成等比数列. (1)求数列的通项公式及; (2)若, n=1,2,3, ,问是否存在实数,使得数列为单调递增数列?若存在,请求出的取值范围;不存在,请说明理由.
在△ABC中,a,b,c分别是内角A,B,C的对边,. (1)若,求△ABC的面积S△ABC; (2)若是边中点,且,求边的长.
已知函数f (t)=log2(2-t)+的定义域为D. (1)求D; (2)若函数g (x)=x2+2mx-m2在D上存在最小值2,求实数m的值.
已知向量m=(sinωx,cosωx),n=(cosωx,cosωx),其中ω>0,函数2m·n-1的最小正周期为π. (1)求ω的值; (2)求函数在[,]上的最大值.