已知数列{an}的前n项和为Sn,且a1=1,Sn=n2an(n∈N*).(1)试求出S1,S2,S3,S4,并猜想Sn的表达式;(2)证明你的猜想,并求出an的表达式.
(本小题满分12分)如图,某建筑物的基本单元可近似地按以下方法构作:先在地平面内作菱形ABCD,边长为1,∠BAD=60°,再在的上侧,分别以△与△为底面安装上相同的正棱锥P-ABD与Q-CBD,∠APB=90°. (1)求证:PQ⊥BD; (2)求点P到平面QBD的距离.
(本小题满分12分)已知函数,的最大值是1且其图像经过点 (1)求的解析式; (2)已知,且,求的值.
(本小题满分14分)已知(1)求函数上的最小值;(2)对一切恒成立,求实数的取值范围;(3)证明:对一切,都有成立.
(本小题满分12分)已知实轴长为,虚轴长为的双曲线的焦点在轴上,直线是双曲线的一条渐近线,且原点、点和点)使等式成立.(I)求双曲线的方程;(II)若双曲线上存在两个点关于直线对称,求实数的取值范围.
如图,在中,,,、分别为、的中点,的延长线交于。现将沿折起,折成二面角,连接. (I)求证:平面平面; (II)当时,求二面角大小的余弦值.