现有高一四个班学生34人,其中一、二、三、四班各7人、8人、9人、10人,他们自愿组成数学课外小组.(1)选其中一人为负责人,有多少种不同的选法?(2)每班选一名组长,有多少种不同的选法?(3)推选二人作中心发言,这二人需来自不同的班级,有多少种不同的选法?
设不等式 2 x - 1 < 1 的解集为 M . (I)求集合 M ; (II)若 a , b ∈ M ,试比较 a b + 1 与 a + b 的大小.
在直接坐标系 x O y 中,直线 l 的方程为 x - y + 4 = 0 ,曲线 C 的参数方程为 x = 3 cos a y = sin a . (I)已知在极坐标(与直角坐标系 x O y 取相同的长度单位,且以原点 O 为极点,以x轴正半轴为极轴)中,点 P 的极坐标为 ( 4 , π 2 ) ,判断点 P 与直线 l 的位置关系; (II)设点 Q 是曲线 C 上的一个动点,求它到直线 l 的距离的最小值.
设矩阵 M = a 0 0 b (其中 a > 0 , b > 0 ). (I)若 a = 2 , b = 3 ,求矩阵M的逆矩阵 M - 1 ; (II)若曲线 C : x 2 + y 2 = 1 在矩阵M所对应的线性变换作用下得到曲线 C ` : x 2 4 + y 2 = 1 ,求 a , b 的值.
如图,四棱锥 P - A B C D 中, P A ⊥ 底面 A B C D ,四边形 A B C D 中, A B ⊥ A D , A B + A D = 4 , C D = 2 , ∠ C D A = 45 ° .
(I)求证:平面 P A B ⊥ 平面 P A D ; (II)设 A B = A P . (i)若直线 P B 与平面 P C D 所成的角为 30 ° ,求线段 A B 的长; (ii)在线段 A D 上是否存在一个点 G ,使得点 G 到点 P , B , C , D 的距离都相等?说明理由.
某产品按行业生产标准分成8个等级,等级系数 X 依次为1,2,……,8,其中 X ≥ 5 为标准 A , X ≥ 3 为标准 B ,已知甲厂执行标准 A 生产该产品,产品的零售价为6元/件;乙厂执行标准 B 生产该产品,产品的零售价为4元/件,假定甲、乙两厂得产品都符合相应的执行标准 (I)已知甲厂产品的等级系数 X 1 的概率分布列如下所示:
且 X 1 的数字期望 E X 1 =6,求 a , b 的值; (II)为分析乙厂产品的等级系数 X 2 ,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下: 3 5 3 3 8 5 5 6 3 4 6 3 4 7 5 3 4 8 5 3 8 3 4 3 4 4 7 5 6 7 用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数 X 2 的数学期望. (III)在(I)、(II)的条件下,若以"性价比"为判断标准,则哪个工厂的产品更具可购买性?说明理由.