已知双曲线x2-=1,过点A(2,1)的直线l与已知双曲线交于P1、P2两点.(1)求线段P1P2的中点P的轨迹方程;(2)过点B(1,1)能否作直线l′,使l′与已知双曲线交于两点Q1、Q2,且B是线段Q1Q2的中点?请说明理由.
(本小题满分14分)如图,在四棱锥中,底面ABCD是正方形,侧棱底面ABCD,,E是PC的中点,作交PB于点F. (I) 证明:PA∥平面EDB; (II) 证明:PB⊥平面EFD; (III) 求三棱锥的体积.
(本小题满分14分)设函数. (Ⅰ)讨论的单调性; (Ⅱ)若对任意恒成立,求实数m的取值范围.
(本小题满分12分)三人独立破译同一份密码,已知三人各自译出密码的概率分别为,且他们是否破译出密码互不影响. (1)求恰有二人破译出密码的概率; (2)求密码被破译的概率.
(本小题满分12分)已知,且,求的值.
(本小题满分14分) 设函数的定义域为R,当x<0时,>1,且对任意的实数x,y∈R,有. (1)求,判断并证明函数的单调性; (2)数列满足,且, ①求通项公式; ②当时,不等式对不小于2的正整数 恒成立,求x的取值范围.