某校高三文科分为四个班.高三数学调研测试后, 随机地在各班抽取部分学生进行测试成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了22人. 抽取出来的所有学生的测试成绩统计结果的频率分布条形图如所示,其中120~130(包括120分但不包括130分)的频率为0.05,此分数段的人数为5人. 0 (1) 问各班被抽取的学生人数各为多少人? (2) 在抽取的所有学生中,任取一名学生, 求分数不小于90分的概率.
已知函数,对于任意,且,满足(Ⅰ)求和的值;(Ⅱ)求证:是偶函数;(III)若在上是增函数,解不等式
已知: (其中是自然对数的底数),求证:.
已知:函数(其中常数).(Ⅰ)求函数的定义域及单调区间;(Ⅱ)若存在实数,使得不等式成立,求a的取值范围
某少数民族的刺绣有着悠久的历史,下图(1)、(2)、(3)、(4)她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮;现按同样的规律刺绣(小正方形的摆放规律相同),设第个图形包含个小正方形(Ⅰ)求出的值;(Ⅱ)利用合情推理的“归纳推理思想”,归纳出与之间的关系式,并根据你得到的关系式求出的表达式;(Ⅲ)求的值.
已知椭圆的离心率为,直线:与以原点为圆心、以椭圆的短半轴长为半径的圆相切.(I)求椭圆的方程;(II)设椭圆的左焦点为,右焦点,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段垂直平分线交于点,求点的轨迹的方程;