如图,已知一艘船从30 n mile/h的速度往北偏东的A岛行驶,计划到达A岛后停留10 min后继续驶往B岛,B岛在A岛的北偏西的方向上.船到达C处时是上午10时整,此时测得B岛在北偏西的方向,经过20 min到达D处,测得B岛在北偏西的方向,如果一切正常的话,此船何时能到达B岛?
已知,命题函数在上单调递减,命题曲线与轴交于不同的两点,若为假命题,为真命题,求实数的取值范围.
在中,角、、的对边分别为、、,且满足.(1)求角的大小;(2)当时,求的面积
已知函数 .(Ⅰ)求函数的单调区间;(Ⅱ)若函数的图像在点处的切线的斜率为,问: 在什么范围取值时,对于任意的,函数在区间上总存在极值?(Ⅲ)当时,设函数,若在区间上至少存在一个,使得成立,试求实数的取值范围.
已知函数,(Ⅰ)当时,求该函数的定义域和值域;(Ⅱ)如果在区间上恒成立,求实数的取值范围
如图,四棱锥中,⊥底面,底面为梯形,,,且,点是棱上的动点.(Ⅰ)当∥平面时,确定点在棱上的位置;(Ⅱ)在(Ⅰ)的条件下,求二面角的余弦值.