如图,已知一艘船从30 n mile/h的速度往北偏东的A岛行驶,计划到达A岛后停留10 min后继续驶往B岛,B岛在A岛的北偏西的方向上.船到达C处时是上午10时整,此时测得B岛在北偏西的方向,经过20 min到达D处,测得B岛在北偏西的方向,如果一切正常的话,此船何时能到达B岛?
设数列满足:. (Ⅰ)求证:数列是等比数列; (Ⅱ)若,且对任意的正整数,都有,求实数的取值范围.
(1)选修4—4:坐标系与参数方程 已知直线的极坐标方程是.以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,曲线的参数方程是(为参数),直线和曲线相交于两点,求线段的长. (2)选修4—5:不等式选讲 已知正实数满足,求证:.
已知对任意的实数,直线都不与曲线相切. (1)求实数的取值范围; (2)当时,函数的图象上是否存在一点,使得点到轴的距离不小于.试证明你的结论.
已知和是椭圆的左、右焦点,为坐标原点,点在该椭圆上,且轴. (1)求椭圆的标准方程; (2)若过点作直线交椭圆于不同的两点,证明:不存在直线,使得.
如图,平面平面,四边形是边长为2的正方形,为上的点,且平面. (1)求证平面; (2)设,是否存在,使二面角的余弦值为?若存在,求的值;若不存在,说明理由.