已知中心在原点,顶点在轴上,离心率为的双曲线经过点(I)求双曲线的方程;(II)动直线经过的重心,与双曲线交于不同的两点,问是否存在直线使平分线段。试证明你的结论
如图,在四棱锥中,底面是边长为的正方形,,且点满足. (1)证明:平面. (2)在线段上是否存在点,使得平面?若存在,确定点的位置,若不存在请说明理由 .
求函数的最小正周期和最小值;并写出该函数在上的单调递增区间.
已知集合,,且,求
已知函数(为常数),函数定义为:对每一个给定的实数, (1)求证:当满足条件时,对于,; (2)设是两个实数,满足,且,若,求函数在区间上的单调递增区间的长度之和.(闭区间的长度定义为)
已知且,函数,,记 (1)求函数的定义域及其零点; (2)若关于的方程在区间内仅有一解,求实数的取值范围.