双曲线的中心为原点 O ,焦点在 x 轴上,两条渐近线分别为 l 1 , l 2 ,经过右焦点 F 垂直于 l 1 的直线分别交 l 1 , l 2 于 A , B 两点.已知 O A → , A B → , O B → 成等差数列,且 B F → 与 F A → 同向. (Ⅰ)求双曲线的离心率; (Ⅱ)设 A B 被双曲线所截得的线段的长为4,求双曲线的方程.
(本题15分)已知直线所经过的定点恰好是椭圆的一个焦点,且椭圆上的点到点的最大距离为3. (Ⅰ)求椭圆的标准方程; (Ⅱ)设过点的直线交椭圆于、两点,若,求直线的斜率的取值范围.
(本题15分)如图,已知平面与直线均垂直于所在平面,且. (Ⅰ)求证:平面; (Ⅱ)若,求二面角的余弦值.
(本题15分)在中,内角的对边分别为,且,. (Ⅰ)求角的大小; (Ⅱ)设边的中点为,,求的面积.
已知函数R). (1)若,且在时有最小值,求的表达式; (2)若,且不等式对任意满足条件的实数恒成立,求常数取值范围.
已知抛物线C:的焦点为F,直线交抛物线于、两点,是线段的中点,过作轴的垂线交抛物线于点. (1)若直线AB过焦点F,求的值; (2)是否存在实数,使是以为直角顶点的直角三角形?若存在,求出的值;若不存在,说明理由.