双曲线的中心为原点 O ,焦点在 x 轴上,两条渐近线分别为 l 1 , l 2 ,经过右焦点 F 垂直于 l 1 的直线分别交 l 1 , l 2 于 A , B 两点.已知 O A → , A B → , O B → 成等差数列,且 B F → 与 F A → 同向. (Ⅰ)求双曲线的离心率; (Ⅱ)设 A B 被双曲线所截得的线段的长为4,求双曲线的方程.
已知函数, ,,、.(Ⅰ)若,判断的奇偶性;(Ⅱ) 若,是偶函数,求;(Ⅲ)是否存在、,使得是奇函数但不是偶函数?若存在,试确定与的关系式;如果不存在,请说明理由.
已知向量(Ⅰ)求的最小正周期T;(Ⅱ)若,b,c分别为△ABC内角A,B,C的对边,A为锐角,上的最大值,求A,b和△ABC的面积.
在中,角、、所对应的边分别为、、,且满足.(I)求角的值;(Ⅱ)若,求的值.
分设A是单位圆和x轴正半轴的交点,P,Q是单位圆上两点,是坐标原点,且,.(Ⅰ)若点Q的坐标是,求的值;(Ⅱ)若函数,求的值域.
已知(Ⅰ)求的值;(Ⅱ)求的值