先阅读下列不等式的证法,再解决后面的问题:已知,,求证.证明:构造函数,因为对一切,恒有≥0,所以≤0,从而得,(1)若,,请写出上述结论的推广式;(2)参考上述解法,对你推广的结论加以证明.
已知,其中向量.(1)求函数的最小正周期;(2)当时,求函数的值域.
已知数列是等差数列,且,.(1)求的通项公式;(2)求前项和的最大值
求平行于直线,且与它的距离为的直线的方程。
(本小题满分12分)设是定义在R上的函数,且(1)若;(2)若.
(本小题满分12分) 如图,在三棱锥P—ABC中,AB⊥BC,AB =" BC" = kPA,点E、D分别是AC、PC的中点,EP⊥底面ABC.(1) 求证:ED∥平面PAB;(2) 求直线AB与平面PAC所成的角;(3) 当k取何值时,E在平面PBC内的射影恰好为△PBC的重心?