已知的展开式中前三项的系数成等差数列.(Ⅰ)求n的值;(Ⅱ)求展开式中系数最大的项.
已知, (Ⅰ)当时,求曲线在点处的切线方程; (Ⅱ)若在处有极值,求的单调递增区间; (Ⅲ)是否存在实数,使在区间的最小值是3,若存在,求出的值;若不存在,说明理由.
在中,角所对的边分别为,且, (1)求,的值; (2)若,求的值.
已知函数 (Ⅰ)求的最小正周期和单调递增区间; (Ⅱ)求函数在上的值域.
已知圆的圆心与点关于直线对称,圆与直线相切. (1)设为圆上的一个动点,若点,,求的最小值; (2)过点作两条相异直线分别与圆相交于,且直线和直线的倾斜角互补,为坐标原点,试判断直线和是否平行?请说明理由.
设是数列的前项和,,,. (1)求证:数列是等差数列,并的通项; (2)设,求数列的前项和.