如图,设是椭圆的左焦点,直线为对应的准线,直线 与轴交于点,为椭圆的长轴,已知,且.(1)求椭圆的标准方程;(2)求证:对于任意的割线,恒有;(3)求三角形△ABF面积的最大值.
(本小题满分10分)选修4-1:几何证明选讲如图所示,AC为⊙O的直径,D为弧BC的中点,E为BC的中点.(Ⅰ)求证:DE∥AB;(Ⅱ)求证:ACBC= 2ADCD.
已知函数.(Ⅰ)求函数的单调区间;(Ⅱ)当时,已知,且,求证:.
已知曲线:,曲线:.曲线的左顶点恰为曲线的左焦点.(Ⅰ)求的值;(Ⅱ)设为曲线上一点,过点作直线交曲线于两点.直线交曲线于 两点.若为中点,①求证:直线的方程为 ;②求四边形的面积.
浑南“万达广场”五一期间举办“万达杯”游戏大赛.每5人组成一队,编号为1,2,3,4,5.在其中的投掷飞镖比赛中,要求随机抽取3名队员参加,每人投掷一次.假设飞镖每次都能投中靶面,且靶面上每点被投中的可能性相同.某人投中靶面内阴影区域记为“成功”(靶面为圆形,为正方形).每队至少有2人“成功”则可获得奖品(其中任何两位队员“成功”与否互不影响).(Ⅰ)某队中有3男2女,求事件A:“参加投掷飞镖比赛的3人中有男有女”的概率;(Ⅱ)求某队可获得奖品的概率.
(本小题满分12分)如图,在中,已知在上,且又平面.(Ⅰ)求证:平面;(Ⅱ)求证:⊥平面.