一辆邮政车自A城驶往B城,沿途有n个车站(包括起点站A和终点站B),每停靠一站便要卸下前面各站发往该站的邮袋各一个,同时又要装上该站发往后面各站的邮袋各一个,设该车从各站出发时邮政车内的邮袋数构成一个有穷数列,试求:(1) (2)邮政车从第k站出发时,车内共有邮袋数是多少个?(3)求数列的前k项和并证明:
(本小题满分13分)在中,分别是角的对边,且. (Ⅰ)求角的大小; (Ⅱ)当时,求面积的最大值,并判断此时的形状.
设是定义在上的函数,且对任意,当时,都有; (1)当时,比较的大小; (2)解不等式; (3)设且,求的取值范围。
已知函数是的一个极值点. (Ⅰ)求函数的单调区间; (Ⅱ)若当时,恒成立,求的取值范围。
已知函数的图象与轴的交点为,它在轴右侧的第一个最高点和第一个最低点的坐标分别为和. (Ⅰ)求的解析式及的值; (Ⅱ)若锐角满足,求的值。
设,(),曲线在点处的切线垂直于轴. (Ⅰ) 求的值; (Ⅱ) 求函数的极值。