(本小题满分14分) 已知圆方程为:.(1)直线过点,且与圆交于、两点,若,求直线的方程;(2)过圆上一动点作平行于轴的直线,设与轴的交点为,若向量,求动点的轨迹方程,并说明此轨迹是什么曲线.
如图,平面ABEF平面ABCD,四边形ABEF与ABCD都是直角梯形,(I)证明:C,D,F,E四点共面;(II)设AB=BC=BE,求二面角A—ED—B的大小。
(本小题满分12分)已知的三内角A,B,C所对三边分别为a,b,c,且(I)求的值。(II)若的面积求a的值。
(本小题满分12分)一射击测试每人射击三次,每击中目标一次记10分。没有击中记0分,某人每次击中目标的概率为(I)求此人得20分的概率;(II)求此人得分的数学期望与方差。
(本小题满分12分)已知甲盒内有大小相同的1个红球和3个白球,乙盒内有大小相同的2个红球和4个白球,现从甲、乙两个盒内各任取2个球.(1)求取出的4个球均为白球的概率;(2)求取出的4个球中恰有1个红球的概率;(3)设为取出的4个球中红球的个数,求的分布列和数学期望.
(本小题满分12分)如图,四棱锥中,底面, .底面为梯形,,.,点在棱上,且.(1)求证:平面;(2)求二面角的大小.