(本小题满分14分) 已知圆方程为:.(1)直线过点,且与圆交于、两点,若,求直线的方程;(2)过圆上一动点作平行于轴的直线,设与轴的交点为,若向量,求动点的轨迹方程,并说明此轨迹是什么曲线.
已知抛物线C:,过C上一点M,且与M处的切线垂直的直线称为C在点M的法线. (1)若C在点M的法线的斜率为,求点M的坐标(x0,y0); (2)设P(-2,a)为C对称轴上的一点,在C上是否存在点,使得C在该点的法线通过点P?若有,求出这些点,以及C在这些点的法线方程;若没有,请说明理由.
如图,是圆的切线,切点为,过的中点作割线交圆于和,求证:.
已知动点到两个定点的距离的和等于4. (1)求动点所在的曲线的方程; (2)若点在曲线上,且,试求面积的最大值和最小值.
已知函数 (1)当时,求该函数的定义域和值域; (2)如果在区间上恒成立,求实数的取值范围.
在△ABC中角A、B、C的对边分别为、、,设向量,,且,. (1)求证:△是直角三角形; (2)求的取值范围.