定义在R上的函数,,当x>0时,,且对任意的a、b∈R,有f(a+b)=f(a)·f(b).(1)求证:f(0)=1;(2)求证:对任意的x∈R,恒有f(x)>0;(3)求证:f(x)是R上的增函数;(4)若f(x)·f(2x-x2)>1,求x的取值范围.
(本小题满分16分)已知点在双曲线上,圆C:与双曲线M的一条渐近线相切于点(1,2),且圆C被x轴截得的弦长为4.(Ⅰ)求双曲线M的方程;(Ⅱ)求圆C的方程;(Ⅲ)过圆C内一定点Q(s,t)(不同于点C)任作一条直线与圆C相交于点A、B,以A、B为切点分别作圆C的切线PA、PB,求证:点P在定直线l上,并求出直线l的方程.
(本小题满分14分)某工厂统计资料显示,一种产品次品率与日产量件之间的关系如下表所示:
其中(为常数).已知生产一件正品盈利元,生产一件次品损失元(为给定常数).(Ⅰ)求出,并将该厂的日盈利额(元)表示为日生产量(件)的函数; (Ⅱ)为了获得最大盈利,该厂的日生产量应该定为多少件?
(本小题满分14分)如图,单位圆(半径为1的圆)的圆心为坐标原点,单位圆与轴的正半轴交与点,与钝角的终边交于点,设. (Ⅰ)用表示; (Ⅱ)如果,求点的坐标; (Ⅲ)求的最小值.
(本小题满分14分)如图,在四棱锥中,底面为菱形,⊥平面,为的中点,为的中点, 求证:(Ⅰ)平面⊥平面;(Ⅱ)//平面.
)已知,不等式的解集为M. (I)求M; (II)当时,证明:.