(1)原点O及直线为曲线C的焦点和相应的准线;(2)被直线垂直平分的直线截曲线C所得的弦长恰好为。若存在,求出曲线C的方程,若不存在,说明理由。
已知直线 l : a x + y = 1 在矩阵 A = 1 2 0 1 对应的变换作用下变为直线 l 1 : x + b y = 1
(I)求实数 a , b 的值 (II)若点 P ( x o , y o ) 在直线 l 上,且 A x o y o = x o y o ,求点 P 的坐标
已知函数 f x = sin ω x + φ ω > 0 , 0 < φ < π 的周期为 π ,图象的一个对称中心为 π 4 , 0 ,将函数 f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将得到的图象向右平移个 π 2 单位长度后得到函数 g x 的图象。 (Ⅰ)求函数 f x 与 g x 的解析式 (Ⅱ)是否存在 x 0 ∈ π 6 , π 4 ,使得 f x 0 , g x 0 , f x 0 g x 0 按照某种顺序成等差数列?若存在,请确定 x 0 的个数,若不存在,说明理由; (Ⅲ)求实数 a 与正整数 n ,使得 F x = f x + a g x 在 0 , n π 内恰有2013个零点.
如图,在四棱柱 A B C D - A 1 B 1 C 1 D 1 中,侧棱 A A 1 ⊥ 底面 A B C D , A B ∥ D C , A A 1 = 1 , A B = 3 k , A D = 4 k , B C = 5 k , D C = 6 k , k > 0
(Ⅰ)求证: C D ⊥ 平面 A D D 1 A 1 .
(Ⅱ)若直线 A A 1 与平面 A B 1 C 所成角的正弦值为 6 7 ,求 k 的值.
(Ⅲ)现将与四棱柱 A B C D - A 1 B 1 C 1 D 1 形状和大小完全相同的两个四棱柱拼成一个新的四棱柱,规定:若拼成的新四棱柱形状和大小完全相同,则视为同一种拼接方案,问共有几种不同的拼接方案?在这些拼接成的新四棱柱中,记其中最小的表面积为 f k ,写出 f k 的解析式。(直接写出答案,不必说明理由).
如图,在正方形 O A B C 中, O 为坐标原点,点 A 的坐标为 ( 10 , 0 ) ,点 C 的坐标为 ( 0 , 10 ) ,分别将线段 O A 和 A B 十等分,分点分别记为 A 1 , A 2 , ⋯ , A 9 和 B 1 , B 2 , ⋯ , B 9 ,连接 O B i ,过 A i 作 x 轴的垂线与 O B i 交于点 P i ( i ∈ N * , 1 ≤ i ≤ 9 ) 。
(1)求证:点 P i ( i ∈ N * , 1 ≤ i ≤ 9 ) 都在同一条抛物线上,并求抛物线 E 的方程; (2)过点 C 作直线 l 与抛物线E交于不同的两点 M , N , 若 ∆ O C M 与 ∆ O C N 的面积之比为4:1,求直线 l 的方程。
已知函数 f ( x ) = x - a ln x ( a ∈ R ) 当 a = 2 时,求曲线 y = f ( x ) 在点 A ( 1 , f ( 1 ) ) 处的切线方程;求函数 f ( x ) 的极值.