(本小题满分16分)在平面直角坐标系中,已知圆和圆.(1)若直线过点,且被圆截得的弦长为,求直线的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线和,它们分别与圆和圆相交,且直线被圆截得的弦长与直线被圆截得的弦长相等,试求所有满足条件的点P的坐标。
若存在x∈R,使|2x﹣a|+2|3﹣x|≤1成立,则实数a的取值范围是()
不等式|2x﹣1|﹣x<1的解集是()
已知集合M={x||x+2|+|x﹣1|≤5},N={x|a<x<6},且M∩N=(﹣1,b],则b﹣a=()
已知A={x||2x﹣1|<5},B={x|x2﹣5x+4<0},C=(1,3),则“x∈A∩B”是“x∈C”的()
若集合M={x∈N*|x<6},N={x||x﹣1|≤2},则M∩∁RN=()