在△ABC中,若,则求证:
(本小题满分10分)已知圆M过两点C(1,-1)、D(-1,1)且圆心M在直线x+y-2=0上。(1)、求圆M的方程(2)、设P是直线3x+4y+8=0上的动点,PA、PB是圆M的两条切线,A、B为切点,求四边形PAMB的面积的最小值。
如图,椭圆长轴端点为,为椭圆中心,为椭圆的右焦点,且,.(1)求椭圆的标准方程;(2)记椭圆的上顶点为,直线交椭圆于两点,问:是否存在直线,使点恰为的垂心?若存在,求出直线的方程;若不存在,请说明理由.
(本小题满分12分)已知数列的前项和为满足:(为常数,且) (1)若,求数列的通项公式(2)设,若数列为等比数列,求的值.(3)在满足条件(2)的情形下,设,数列前项和为,求证
(本小题满分12分)已知圆:和定点,由圆外一点向圆引切线,切点为,且满足.(1)求实数间满足的等量关系式;(2)求面积的最小值;(3)求的最大值。
(本小题满分12分)已知椭圆的离心率,过点和的直线与原点的距离为。⑴求椭圆的方程;⑵已知定点,若直线与椭圆交于两点,问:是否存在的值,使以为直径的圆过点?请说明理由。