数列{an}的前n项和为Sn,且a1=1,,n=1,2,3,……,求(I)a2,a3,a4的值及数列{an}的通项公式;(II)的值.
已知椭圆C:=1(a>b>0)过点P(-1,-1),c为椭圆的半焦距,且c=b.过点P作两条互相垂直的直线l1,l2与椭圆C分别交于另两点M,N.(1)求椭圆C的方程;(2)若直线l1的斜率为-1,求△PMN的面积;(3)若线段MN的中点在x轴上,求直线MN的方程.
某种树苗栽种时高度为A(A为常数)米,栽种n年后的高度记为f(n).经研究发现f(n)近似地满足 f(n)=,其中,a,b为常数,n∈N,f(0)=A.已知栽种3年后该树木的高度为栽种时高度的3倍. (1)栽种多少年后,该树木的高度是栽种时高度的8倍;(2)该树木在栽种后哪一年的增长高度最大.
如图,在四棱锥P-ABCD中,O为AC与BD的交点,AB^平面PAD,△PAD是正三角形, DC//AB,DA=DC=2AB.(1)若点E为棱PA上一点,且OE∥平面PBC,求的值;(2)求证:平面PBC^平面PDC.
在△ABC中,角A,B,C所对的边分别为a,b,c,且+1=.(1)求B;(2)若cos(C+)=,求sinA的值.
已知函数的图象在点处的切线方程为.(1)求实数的值;(2)设.①若是上的增函数,求实数的最大值;②是否存在点,使得过点的直线若能与曲线围成两个封闭图形,则这两个封闭图形的面积总相等.若存在,求出点坐标;若不存在,说明理由.