数列{an}的前n项和为Sn,且a1=1,,n=1,2,3,……,求(I)a2,a3,a4的值及数列{an}的通项公式;(II)的值.
(本题满分12分) 已知直线:,:,求: (1)直线与的交点的坐标;(2)过点且与垂直的直线方程.
(本小题满分12分) 在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点. (1)求证:EF∥平面CB1D1; (2)求证:平面CAA1C1⊥平面CB1D1
(本小题满分12分)如图,在四边形中,点C(1,3). (1)求OC所在直线的斜率; (2)过点C做CD⊥AB于点D,求CD所在直线的方程.
(满分14分) 定义在上的函数同时满足以下条件: ①在上是减函数,在上是增函数;②是偶函数; ③在处的切线与直线垂直. (1)求函数的解析式; (2)设,求函数在上的最小值.
已知椭圆(a>b>0)的离心率e=,连接椭圆的四个顶点得到的菱形的面积为4.(Ⅰ)求椭圆的方程;(Ⅱ)设直线l与椭圆相交于不同的两点A、B,已知点A的坐标为(-,0).若,求直线l的倾斜角;