(本题满分12分,第Ⅰ小题4分,第Ⅱ小题5分,第Ⅲ小题3分)如图,是直角梯形,∠=90°,∥,=1,=2,又=1,∠=120°,⊥,直线与直线所成的角为60°.(Ⅰ)求证:平面⊥平面;(Ⅱ)求二面角的大小;(Ⅲ)求三棱锥的体积.
(本小题满分12分) 已知抛物线:过点。 (1)求抛物线的方程,并求其准线方程; (2)是否存在平行于(为坐标原点)的直线,使得直线与抛物线有公共点,且直线与的距离等于?若存在,求出直线的方程;若不存在,说明理由。
(本小题满分12分) 数列中,,前项和满足。 (1)求数列数列的通项公式,以及前项和; (2)若,,成等差数列,求实数的值。
(本小题满分14分)已知函数(是自然对数的底数) (1)求的最小值; (2)不等式的解集为P,若 求实数的取值范围; (3)已知,是否存在等差数列和首项为公比大于0的等比数列,使数列的前n项和等于
(本题14分)如图,椭圆长轴端点为,为椭圆中心,为椭圆的右焦点, 且,.(1)求椭圆的标准方程; (2)记椭圆的上顶点为,直线交椭圆于两点,问:是否存在直线,使点恰为的垂心?若存在,求出直线的方程;若不存在,请说明理由.
(本小题共13分) 如图,在三棱锥中,底面ABC,点、分别在棱上,且 (Ⅰ)求证:平面; (Ⅱ)当为的中点时,求与平面所成角的大小的余弦值; (Ⅲ)是否存在点,使得二面角为直二面角?并说明理由.