A、B为双曲线上的两个动点,满足。(Ⅰ)求证:为定值; (Ⅱ)动点P在线段AB上,满足,求证:点P在定圆上.
设是定义在上的偶函数,当时,单调递减,若成立,求的取值范围.
解方程:
已知椭圆的右焦点为,点在椭圆上.(1)求椭圆的方程;(2)点在圆上,且在第一象限,过作圆的切线交椭圆于,两点,求证:△的周长是定值.
已知圆,直线.(1)求证:对任意,直线与圆恒有两个交点;(2)求直线被圆截得的线段的最短长度,及此时直线的方程.
如图,三棱柱中,侧棱垂直底面,是棱的中点.(1)证明:平面⊥平面;(2)平面分此棱柱为两部分,求这两部分体积的比.