已知数列是一个公差大于0的等差数列,且满足 (1)求数列的通项公式;(2)数列和数列满足等式,求数列 的前n项和Sn。
设函数f(x)=-ax,g(x)=b+2b-1. (1)若曲线y=f(x)与y=g(x)在它们的交点(1,c)处有相同的切线,求实数a,b的值; (2)当a=1,b=0时,求函数h(x)=f(x)+g(x)在区间[t,t+3]内的最小值.
已知函数f(x)=a+bx-a-ab(a≠0),当时,f(x)>0;当时,f(x)<0. (1)求f(x)在内的值域; (2)若方程在有两个不等实根,求c的取值范围.
已知函数f(x)=. (1)求f(x)的值域和最小正周期; (2)方程m[f(x)+]+2=0在内有解,求实数m的取值范围.
(本小题15分)设动点到定点的距离比到轴的距离大.记点的轨迹为曲线C. (1)求点的轨迹方程; (2)设圆M过,且圆心M在P的轨迹上,是圆M在轴上截得的弦,当圆心M运动时弦长是否为定值?说明理由; (3)过作互相垂直的两直线交曲线C于G、H、R、S,求四边形面积的最小值.
(本小题15分)已知正方形的边长为,.将正方形沿对角线折起,使,得到三棱锥,如图所示. (1)当时,求证:; (2)当二面角的大小为时,求AB与平面BCD所成角的正弦值.