(本小题满分13分)如图,、是通过某城市开发区中心的两条南北和东西走向的街道,连接、两地之间的铁路线是圆心在上的一段圆弧.若点在点正北方向,且,点到、的距离分别为和.(Ⅰ)建立适当坐标系,求铁路线所在圆弧的方程;(Ⅱ)若该城市的某中学拟在点正东方向选址建分校,考虑环境问题,要求校址到点的距离大于,并且铁路线上任意一点到校址的距离不能少于,求该校址距点O的最近距离(注:校址视为一个点).
已知函数,.(1)求函数的单调递减区间;(2)求函数在区间上的最大值和最小值.
已知.(1)求的值;(2)求的值.
已知集合,集合.(1)求;(2)设集合,若,求实数的取值范围.
已知点,点为直线上的一个动点.(Ⅰ)求证:恒为锐角;(Ⅱ)若四边形为菱形,求的值.
已知函数f(x)=.(Ⅰ)求函数f(x)的定义域;(Ⅱ)判断函数f(x)的奇偶性,并证明;(Ⅲ)判断函数f(x)在定义域上的单调性,并用定义证明.