(本小题满分13分)如图,、是通过某城市开发区中心的两条南北和东西走向的街道,连接、两地之间的铁路线是圆心在上的一段圆弧.若点在点正北方向,且,点到、的距离分别为和.(Ⅰ)建立适当坐标系,求铁路线所在圆弧的方程;(Ⅱ)若该城市的某中学拟在点正东方向选址建分校,考虑环境问题,要求校址到点的距离大于,并且铁路线上任意一点到校址的距离不能少于,求该校址距点O的最近距离(注:校址视为一个点).
如图,在三棱锥中,△是边长为的正三角形,, ,分别为,的中点,,. (Ⅰ)求证:平面; (Ⅱ)求直线与平面所成角的正弦值.
已知数列满足:,,(),,,分别是公差不为零的等差数列的前三项. (Ⅰ)求的值; (Ⅱ)求证:对任意的,,,不可能成等比数列.
在△中,角所对的边分别为.已知. (Ⅰ)求角的大小; (Ⅱ)若,且△的面积为,求边的长.
设等差数列的前项和为,公差为正整数.若,则的值为.
已知函数 (1)当时,求使成立的的值; (2)当,求函数在上的最大值; (3)对于给定的正数,有一个最大的正数,使时,都有,试求出这个正数,并求它的取值范围.