(文)数列{an}中a1=0,,(1)求证数列为等差数列,并求出公差;(2)设数列{an}的前n项和为Sn,证明Sn<n-ln(n+1);(3)设,证明:对任意正整数n,m,都有.
ABC中,a,b,c分别为内角A,B,C所对的边长,a=,b=,,求边BC上的高.
(10分)已知是公差不为零的等差数列,成等比数列. (Ⅰ)求数列的通项;(Ⅱ)求数列的前n项和
(本小题满分12分) 已知函数 (1)若,求曲线在点处的切线方程; (2)若函数在其定义域内为增函数,求的取值范围; (3)在(2)的条件下,设函数,若在上至少存在一点,使得成立,求实数的取值范围.
(本小题满分12分) 已知椭圆经过点其离心率为 (1)求椭圆的方程 (2)设直线与椭圆相交于A、B两点,以线段为邻边作平行四边形OAPB,其中顶点P在椭圆上,为坐标原点. 求到直线的距离的最小值.
(本小题满分12分) 某校从高一年级期末考试的学生中抽出名学生,其成绩(均为整数)的频率分布直方图如图所示 (1)估计这次考试的及格率(分及以上为及格); (2) 假设在[90,100]段的学生的成绩都不相同,且都在94分以上,现用简单随机抽样方法,从这个数中任取个数,求这个数恰好是两个学生的成绩的概率.