(文)数列{an}中a1=0,,(1)求证数列为等差数列,并求出公差;(2)设数列{an}的前n项和为Sn,证明Sn<n-ln(n+1);(3)设,证明:对任意正整数n,m,都有.
如图,平面ACB⊥平面BCD,∠CAB=∠CBD=900, ∠BDC=600,BC=6,AB=AC. (Ⅰ)求证:平面ABD⊥平面ACD;(Ⅱ)求二面角A—CD—B的平面角的正切值; (Ⅲ)设过直线AD且与BC平行的平面为,求点B到平面的距离。
如图,长方体中,,点在上且,过点的平面截长方体,截面为(在上). (1)求的长度;(2)求点C到截面的距离.
如图,四棱锥中,侧面是边长为2的正三角形,且与底面垂直,底面是的菱形,为的中点. (Ⅰ) 求证:平面; (Ⅱ) 求二面角的余弦值.
已知四棱锥(如图)底面是边长为2的正方形.侧棱底面,、分别为、的中点,于。 (Ⅰ)求证:平面⊥平面; (Ⅱ)直线与平面所成角的正弦值为,求PA的长; (Ⅲ)在条件(Ⅱ)下,求二面角的余弦值。
如图,某建筑物的基本单元可近似地按以下方法构作:先在地平面内作菱形ABCD,边长为1,∠BAD=60°,再在的上方,分别以△与△为底面安装上相同的正棱锥P-ABD与Q-CBD,∠APB=90°. (Ⅰ)求证:PQ⊥BD; (Ⅱ)求二面角P-BD-Q的余弦值; (Ⅲ)求点P到平面QBD的距离.