如图,在棱长为1的正方体 A B C D - A ` B ` C ` D ` 中, A P = B Q = b 0 < b < 1 ,截面 P Q E F ∥ A ` D ,截面 P Q G H ∥ A D ` .
(Ⅰ)证明:平面 P Q E F 和平面 P Q G H 互相垂直; (Ⅱ)证明:截面 P Q E F 和截面 P Q G H 面积之和是定值, 并求出这个值; (Ⅲ)若 D ` E 与平面 P Q E F 所成的角为 45 ° ,求 D ` E 与平 面 P Q E F 所成角的正弦值.
已知数列的前项和为满足( ) (1)证明数列为等比数列; (2)设,求数列的前项和
某种汽车购买时费用为万元,每年应交保险费,养路费,保险费共万元,汽车的维修费为:第一年万元,第二年万元,第三年万元,……,依次成等差数列逐年递增. (1)设使用年该车的总费用(包括购车费用)为试写出的表达式; (2)求这种汽车使用多少年报废最合算(即该车使用多少年平均费用最少).
已知是的三个内角,且其对边分别为且 (1)求角的大小; (2)若求的面积.
已知是的三个内角,其对边分别为且 (1)求的值;(2)若角A为锐角,求角和边的值.
(1)解不等式:; (2)解关于的不等式: .