如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,为上的点,且BF⊥平面ACE.(1)求证:AE⊥BE;(2)求三棱锥D-AEC的体积;(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.
如图,在梯形ABCD中,AB∥CD,,,平面平面,四边形是矩形,,点在线段上。(1)求证:平面;(2)当为何值时,∥平面?写出结论,并加以证明;(3)当EM为何值时,AM⊥BE?写出结论,并加以证明。
求与向量=,-1)和=(1,)夹角相等,且模为的向量的坐标。
已知△ABC中,A(2,-1),B(3,2),C(-3,-1),BC边上的高为AD,求点D和向量坐标。
已知长方形ABCD,AB=3,BC=2,E为BC中点,P为AB上一点(1)利用向量知识判定点P在什么位置时,∠PED=450;(2)若∠PED=450,求证:P、D、C、E四点共圆。
在△OAB的边OA、OB上分别取点M、N,使||∶||=1∶3,||∶||=1∶4,设线段AN与BM交于点P,记= ,=,用 ,表示向量。