河南中原名校高三下学期第二次联考理科数学试卷
下列命题正确的个数是( )
①“在三角形ABC中,若,则”的逆命题是真命题;②命题或,命题则是的必要不充分条件;③“”的否定是“”;④若随机变量,则⑤回归分析中,回归方程可以是非线性方程.
A.1 | B.2 | C.3 | D.4 |
一个算法的程序框图如右图所示,若该程序输出的P位于区间内,则判断框内应填入的条件是( )
A. | B. | C. | D. |
已知双曲线,以右顶点为圆心,实半轴长为半径的圆被双曲线的一条渐近线分为弧长为1:2的两部分,则双曲线的离心率为( )
A. | B. | C. | D. |
在三角形ABC中,的平分线交BC于D,AB="4," ,则AD的长为( )
A. | B. | C. | D. |
已知三角形PAD所在平面与矩形ABCD所在平面互相垂直,PA="PD=AB=2," 若点P,A,B,C,D都在同一球面上,则此球的表面积等于( )
A. | B. | C. | D. |
将数字1,2,3,4填入右侧表格内,要求每行、每列的数字互不相同,如图所示,则不同的填表方式共有( )种.
1 |
2 |
3 |
4 |
4 |
3 |
1 |
2 |
2 |
1 |
4 |
3 |
3 |
4 |
2 |
1 |
A.432 B.576 C.720 D.864
已知函数
(1)求函数的最大值,并写出取最大值时的取值集合;
(2)在中,角的对边分别为,若求的最小值.
某市为“市中学生知识竞赛”进行选拔性测试,且规定:成绩大于或等于90分的有参赛资格,90分以下(不包括90分)的被淘汰.若有500人参加测试,学生成绩的频率分布直方图如图.
(1)求获得参赛资格的人数;
(2)根据频率直方图,估算这500名学生测试的平均成绩;
(3)若知识竞赛分初赛和复赛,在初赛中每人最多有5次选题答题的机会,累计答对3题或答错3题即终止,答对3题者方可参加复赛.已知参赛者甲答对每一个问题的概率都相同,并且相互之间没有影响.已知他连续两次答错的概率为,求甲在初赛中答题个数的分布列及数学期望.
如图,在直角梯形ABCP中,,D是AP的中点,E,G分别为PC,CB的中点,将三角形PCD沿CD折起,使得PD垂直平面ABCD.(1)若F是PD的中点,求证:AP平面EFG;(2)当二面角G-EF-D的大小为时,求FG与平面PBC所成角的余弦值.
如图,已知抛物线C的顶点在原点,开口向右,过焦点且垂直于抛物线对称轴的弦长为2,过C上一点A作两条互相垂直的直线交抛物线于P,Q两点.
(1)若直线PQ过定点,求点A的坐标;
(2)对于第(1)问的点A,三角形APQ能否为等腰直角三角形?若能,试确定三角形APD的个数;若不能,说明理由.
已知函数图像上一点处的切线方程为(1)求的值;(2)若方程在区间内有两个不等实根,求的取值范围;(3)令如果的图像与轴交于两点,的中点为,求证:
如图,在锐角三角形ABC中,D 为C在AB上的射影,E 为D在BC上的射影,F为DE上一点,且满足
(1)证明:(2)若AD=2,CD=3.DB=4,求的值.
在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,两种坐标系取相同单位长度.已知曲线过点的直线的参数方程为(t为参数). (1)求曲线C与直线 的普通方程;(2)设曲线C经过伸缩变换得到曲线,若直线 与曲线相切,求实数的值.