广西桂林市高三第二次联合调研考试理科数学卷
过点M的直线l与圆C交于A、B两点,当∠ACB最小时,直线l的方程为 ( )
A. B. C.D.
现有四所大学进行自主招生,同时向一所高中的已获省级竞赛一等将的甲、乙、丙、丁四位学生发出录取通知书,若这四名学生都愿意进这四所大学的任一所就读,则仅有两名学生被录取到同一所大学的就读方式有 ( )
A.288种 | B.144种 | C.108种 | D.72种 |
设抛物线的焦点为F,点A(0,2),若线段FA与抛物线的交点B满足,则点B到该抛物线的准线的距离为 ( )
A. | B. | C. | D. |
已知是大小为45°的二面角,C为二面角内一定点,且到半平面的距离分别为和6,A、B分别是半平面内的动点,则△ABC周长的最小值为
A. B. C.15 D.
已知P是双曲线上的动点,F1、F2分别是双曲线的左、右焦点,M是∠F1PF2的平分线上的一点,且,O为坐标原点,则|OM|=" "
已知三角形PAD所在平面与矩形ABCD所在平面互相垂直,PA=PD=AB=2,∠APD=120°,若点P、A、B、C、D都在同一球面上,则此球的表面积等于
如图,在四棱锥P—ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB//DC,∠BCD=90°,E为棱PC上异于C的一点,DE⊥BE
(1)证明:E为PC的中点;
(2)求二面角P—DE—A的大小
某大学毕业生参加一个公司的招聘考试,考试分笔试和面试两个环节,笔试有A、B两个题目,该学生答对A、B两题的概率分别为和,两题全部答对方可过入面试,面试要回答甲、乙两个题目,该学生答对这两个题目的概率均为,至少答对一题即可被聘用(假设每个环节的每个题目回答正确与否是相互独立的)
(1)求该学生被公司聘用的概率;
(2)设该学生答对题目的个数为,求的分布列和数学期望.
如图,设抛物线的准线与x轴交地F1,焦点为F2,以F1、F2为焦点,离心率的椭圆C2与抛物线C2在x轴上方的交点为P。
(1)当m=1时,求椭圆C2的方程;
(2)延长PF2交抛物线于点Q,M是抛物线C1上一动点,且M在P与Q之间运动,当△PF1F2的边长恰好是三个连续的自然数时,求△MPQ面积的最大值。