[浙江]2013-2014学年浙江杭州七校高二上学期期中联考数学试卷
用斜二测画法作一个边长为2的正方形,则其直观图的面积为( )
A. | B. 2 | C.4 | D. |
已知是两条不同的直线,是两个不同的平面,则下列命题正确的是( )
A.若,则 | B.若,则 |
C.若,则 | D.若,则 |
已知实数是常数,如果是圆外的一点,那么直线与圆的位置关系是( )
A.相交 | B.相切 | C.相离 | D.都有可能 |
已知和是平面内互相垂直的两条直线,它们的交点为A,异于点A的两动点B、C分别在、上,且BC=,则过A、B、C三点的动圆所形成的图形面积为( )
A. B. C. D.
已知圆:,是轴上的一点,分别切圆于两点,且,则直线的斜率为( )
A.0 | B. | C.1 | D. |
如图,正方体ABCD-A1B1C1D1中,E,F分别为棱AB,CC1的中点,在平面ADD1A1内且与平面D1EF平行的直线( )
A.不存在 | B.有1条 |
C.有2条 | D.有无数条 |
已知直线x+y+m=0与圆x2+y2=4交于不同的两点A,B,O是坐标原点,,则实数的取值范围是( )
A. | B. |
C. | D. |
A(1,-2,1),B(2,2,2),点P在z轴上,且|PA|=|PB|,则点P的坐标为 .
已知一个三棱锥的正视图和俯视图如图所示,其中俯视图是顶角为的等腰三角形,则该三棱锥的侧视图面积为
已知点A(2,0),B是圆上的定点,经过点B的直线与该圆交于另一点C,当面积最大时,直线BC的方程为 .
如图所示,在三棱柱ABC-A1B1C1中,AA1底面A1B1C1, 底面为直角三角形,∠ACB=90°,AC=2,BC=1,CC1=,P是BC1上一动点,则A1P+PC的最小值是 。
如图,直线过点P(2,1),夹在两已知直线和之间的线段AB恰被点P平分.
(1)求直线的方程;
(2)设点D(0,m),且AD//,求:ABD的面积.
如图,在四棱锥P-ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G为线段PC的中点.
(1)证明:PA//平面BGD;
(2)求直线DG与平面PAC所成的角的正切值.
(本小题满分14分)如图,在四面体A−BCD中,AD^平面BCD,BC^CD,AD=2,BD=2.M是AD的中点.
(1)证明:平面ABC平面ADC;
(2)若ÐBDC=60°,求二面角C−BM−D的大小.