福建省福州市八县(市)协作校高三上学期期中联考文科数学卷
下列说法错误的是 ( )
A.如果命题“”与命题“”都是真命题,那么命题q一定是真命题; |
B.命题“若,则”的否命题是:“若,则”; |
C.若命题:,则: |
D.“”是“”的充分不必要条件 |
函数 零点所在的一个区间是 ( )
A.(-2,-1) | B.(-1,0) | C.(0,1) | D.(1,2) |
给定函数①,②,③,④,其中在区间
(0,1)上单调递减的函数序号是 ( )
A.①② | B.②③ | C.③④ | D.①④ |
将函数的图象先向左平移个单位长度,再把横坐标伸长到原来的倍,纵坐标不变。所得到的曲线对应的函数解析式是 ( )
A. | B. | C. | D. |
若,且,则向量与的夹角为 ( )
A.30° | B.60° | C.120° | D.150° |
已知函数,有下列四个命题:
①是奇函数; ②的值域是;
|
③方程总有四个不同的解;④在上单调递增。
其中正确的是 ( )
A.②④ | B.②③ | C.①③ | D.③④ |
已知函数是幂函数且其图象过点,令,记数列的前项和为,则时,的值是 ( )
A.110 | B.120 | C.130 | D.140 |
定义在上的函数是奇函数,且,在区间[1,2]上是单调递减函数.关于函数有下列结论:
①图象关于直线x=1对称; ②最小正周期是2;
③在区间[-2,-1]上是减函数; ④在区间[-1,0]上是增函数
其中正确的结论序号是 (把所有正确结论的序号都填上)
(本小题满分12分)已知,设命题:函数在上单调递增;命题:不等式对恒成立。若为真命题,为假命题,求实数的取值范围。
(本小题满分12分) 设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,且
(Ⅰ)求B的大小;
(Ⅱ)若,且△ABC的面积为,求的值.
(本小题满分12分)
设函数,其中
(1)求出的最小正周期和单调递减区间;
(2)求在[上最大值与最小值.
(本小题满分12分) 已知等差数列的前9项和为171.
(1)求;
(2)若,从数列中,依次取出第二项、第四项、第八项,……,
第项,按原来的顺序组成一个新的数列,求数列的前项和.
(本小题满分12分)某投资商到一开发区投资72万元建起一座蔬菜加工厂,第一年共支出12万元,以后每年支出增加4万元,从第一年起每年蔬菜销售收入为50万元.设表示前年的纯利润总和, 表示前年的总支出.
[前年的总收入-前年的总支出-投资额].
(1)写出的关系式
(2)写出前年的纯利润总和关于的函数关系式;并求该厂从第几年开始盈利?
(3)若干年后,投资商为开发新项目,对该厂有两种处理方案:①年平均纯利润达到最大时,以48万元出售该厂;②纯利润总和达到最大时,以16万元万元出售该厂,问哪种方案更合算?