[江苏]2014届江苏省徐州市高三第一学期期中数学试卷
已知,函数.
(1)当时,写出函数的单调递增区间;
(2)当时,求函数在区间[1,2]上的最小值;
(3)设,函数在(m,n)上既有最大值又有最小值,请分别求出m,n的取值范围(用a表示).
来源:2014届江苏省徐州市高三第一学期期中数学试卷
如图,某生态园欲把一块四边形地辟为水果园,其中, ,.若经过上一点和上一点铺设一条道路,且将四边形分成面积相等的两部分,设.
(1)求的关系式;
(2)如果是灌溉水管的位置,为了省钱,希望它最短,求的长的最小值;
(3)如果是参观路线,希望它最长,那么的位置在哪里?
来源:2014届江苏省徐州市高三第一学期期中数学试卷
已知等比数列满足.
(1)求数列的通项公式;
(2)在与之间插入个数连同与按原顺序组成一个公差为()的等差数列.
①设,求数列的前和;
②在数列中是否存在三项(其中成等差数列)成等比数列?若存在,求出这样的三项;若不存在,说明理由.
来源:2014届江苏省徐州市高三第一学期期中数学试卷