如图,某生态园欲把一块四边形地辟为水果园,其中, ,.若经过上一点和上一点铺设一条道路,且将四边形分成面积相等的两部分,设.(1)求的关系式;(2)如果是灌溉水管的位置,为了省钱,希望它最短,求的长的最小值;(3)如果是参观路线,希望它最长,那么的位置在哪里?
已知 (1)求函数的最大值;(2)求使成立的x的取值范围.
设函数 (1)求函数的定义域; (2)求函数的值域; (3)求函数的单调区间.
(本小题14分)已知点(1,)是函数且)的图象上一点, 等比数列的前项和为,数列的首项为,且前项和满足-=+(). (1)求数列和的通项公式; (2)若数列{前项和为,问的最小正整数是多少? (3)设求数列的前项和
(本小题14分)在数列中,,,. (Ⅰ)证明数列是等比数列; (Ⅱ)求数列的前项和; (Ⅲ)证明不等式,对任意皆成立.
(本小题14分)某公司计划在今年内同时出售变频空调机和智能洗衣机,由于这两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大已知对这两种产品有直接限制的因素是资金和劳动力,通过调查,得到关于这两种产品的有关数据如下表:
试问:怎样确定两种货物的月供应量,才能使总利润达到最大,最大利润是多少?