[北京]2013年北京市顺义区中考二模数学试卷
正方形, ,,, …按如图所示的方式放置.点 ,,,…和点,,…分别在直线和轴上,已知点,,则点的坐标是 ,点的坐标是 .
列方程或方程组解应用题:
某企业向四川雅安地震灾区捐助价值17.6万元的甲、乙两种帐篷共200顶,已知甲种帐篷每顶800元,乙种帐篷每顶1000元,问甲、乙两种帐篷各多少顶?
如图,在平面直角坐标系中,一次函数的图象与轴相交于点,与轴相交于点,与反比例函数图象相交于点,且.
(1)求反比例函数的解析式;
(2)若点在轴上,且的面积等于12,直接写出点的坐标.
已知:如图,是RtABC的外接圆,ABC=90,点P是外一点,PA切于点A,且PA=PB.
(1)求证:PB是的切线;
(2)已知PA=,BC=2,求的半径.
甲、乙两学校都选派相同人数的学生参加综合素质测试,测试结束后,发现每名参赛学生的成绩都是70分、80分、90分、100分这四种成绩中的一种,并且甲、乙两学校的学生获得100分的人数也相等.根据甲学校学生成绩的条形统计图和乙学校学生成绩的扇形统计图,解答下列问题:
(1)求甲学校学生获得100分的人数,并补全统计图;
(2)分别求出甲、乙两学校学生这次综合素质测试所得分数的中位数和平均数,以此比较哪个学校的学生这次测试的成绩更好些.
问题:如果存在一组平行线,请你猜想是否可以作等边三角形使其三个顶点分别在上.
小明同学的解答如下:如图1所示,过点作于,作,且,过点作交直线于点,在直线上取点使,则为所求.
(1)请你参考小明的作法,在图2中作一个等腰直角三角形使其三个顶点分别在上,点为直角顶点;
(2)若直线之间的距离为1,之间的距离为2,则在图2中, ,在图1中, .
已知抛物线.
(1)求证:无论为任何实数,抛物线与x轴总有两个交点;
(2)若为整数,当关于x的方程的两个有理数根都在与之间(不包括-1、)时,求的值.
(3)在(2)的条件下,将抛物线在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新图象,再将图象向上平移个单位,若图象与过点(0,3)且与x轴平行的直线有4个交点,直接写出n的取值范围是 .
如图,直线与线段相交于点,点和点在直线上,且.
(1)如图1所示,当点与点重合时 ,且,请写出与的数量关系和位置关系;
(2)将图1中的绕点顺时针旋转到如图2所示的位置,,(1)中的与的数量关系和位置关系是否仍然成立?若成立,请证明;若不成立,请说明理由;
(3)将图2中的拉长为的倍得到如图3,求的值.