[浙江]2013届浙江省湖州市九年级中考一模调研测试数学试卷
下列计算正确的是( )
A.a4+a2=a6 | B.2a·4a=8a | C.a5÷a2=a3 | D.(a2)3=a5 |
如图,一把大遮阳伞,伞面撑开时可近似地看成是圆锥形,它的母线长是5米,底面半径为3米,则做这把遮阳伞需用布料的面积是( )平方米(接缝不计).
A. | B. | C. | D. |
某件衣服标价200元,按标价的6折出售可获利20%,则这件衣服的进价为( )元
A.100 | B.105 | C.120 | D.150 |
如图,把矩形ABCD折叠,使点C落在点A处,点D落在点G处,若∠FED=120°,且DE=2,则边BC的长为( )
A. | B. | C.8 | D.6 |
如图,△AOB为等边三角形,点A在第四象限,点B的坐标为(4,0),过点C(- 4,0)作直线l交AO于D,交AB于E,且点E在某反比例函数图象上,当△ADE和△DCO的面积相等时,k的值为( )
A. | B. | C. | D. |
为筹备班级里的新年晚会,班长对全班同学爱吃哪几种水果作了民意调查,最终买什么水果,该由调查数据的 决定(在横线上填写:平均数或中位数或众数).
如图,在Rt△ABC中,∠C=Rt∠,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB、BC分别交于点E、D,则AE的长为 .
如图,在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点叫做整点.已知点A(0,3),点B 是x轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m.当点B的横坐标为3n(n为正整数)时,m= (用含n的代数式表示).
如图,在□ABCD中,EF∥BD,分别交BC、CD于点P、Q,分别交AB、AD 的延长线于点E、F,BE=BP.
(1)若∠E=70度,求∠F的度数.
(2)求证:△ABD是等腰三角形.
为增强学生的身体素质,我校坚持长年的全员体育锻炼,并定期进行体能测试,下图是将初三某班学生的立定跳远成绩(精确到0.1米)进行整理后,画出的频数分布直方图的一部分,已知从左到右第一、二、四、五组的频率分别是0.05,0.15,0.30,0.35,第三小组的频数为9人(共有5个小组).
(1)该班参加这次测试的学生有多少人?
(2)若成绩在2.0米以上(含2.0米)的为合格,问该班成绩的合格率是多少?
(3)这次测试中,该班学生成绩中位数落在哪一小组内?
已知一次函数y=kx+b的图象经过点A(-1,3)和点B(2,-3).
(1)求这个一次函数的解析式;
(2)当x取何值时,函数值?
如图,在⊙O中,AB是直径,AD是弦,∠ADE=60°,∠C=30°.
(1)判断直线CD是否为⊙O的切线,请说明理由;
(2)若CD="3" ,求BC的长.
如图①是矩形包书纸的示意图,虚线是折痕,四个角均为大小相同的正方形,正方形的边长为折叠进去的宽度.
(1)现有一本书长为25cm,宽为20cm,厚度是2cm,如果按照如图①的包书方式,并且折叠进去的宽度是3cm,则需要书包纸的长和宽分别为多少?(请直接写出答案).
(2)已知数学课本长为26 cm,宽为18.5cm,厚为1cm,小明用一张面积为1260cm2的矩形书包纸按如图①包好了这本书,求折进去的宽度.
(3)如图②,矩形ABCD是一张一个角(△AEF)被污损的书包纸,已知AB=30,BC=50,AE=12,AF=16,要使用没有污损的部分包一本长为19,宽为16,厚为6的字典,小红认为只要按如图②的剪裁方式剪出一张面积最大的矩形PGCH就能包好这本字典. 设PM=x,矩形PGCH的面积为y,当x取何值时y最大?并由此判断小红的想法是否可行.
如图,平面直角坐标系xOy中, Rt△AOB的直角边OA在x轴的正半轴上,点B在第一象限,并且AB=3,OA=6,将△AOB绕点O逆时针旋转90度得到△COD.点P从点C出发(不含点C),沿射线DC方向运动,记过点D,P,B的抛物线的解析式为y=ax2+bx+c(a<0).
(1)直接写出点D的坐标;
(2)在直线CD的上方是否存在一点Q,使得点D,O,P,Q四点构成的四边形是菱形,若存在,求出P与Q的坐标;
(3)当点P运动到∠DOP=45度时,求抛物线的对称轴;
(4)求代数式a+b+c的值的取值范围(直接写出答案即可).