[辽宁]2013届辽宁省五校协作体高三摸底考试文科数学试卷
若集合M = {x ∈R | 2 x ≥ 4},N = {x∈R | x 2 - 4 x + 3 ≥ 0},则M∩N =( )
A. {x | x≤ 4} | B. {x | x≤ 1} |
C.{x | x≥ 2} | D. {x | x≥ 3} |
已知函数,满足则x的取值范围是( )
A.{x | < x < 10} | B.{x | < x < 10且x≠3} |
C.{x | x< 10} | D.{x | 3 < x < 10} |
命题p :,使;命题q:,都有;则下列说法正确的是 ①命题 “”是真命题;②命题“”是假命题;③命题“”是假命题;④命题“”是假命题_______________(把正确的都填上)
(本题满分10分)
在△ABC中,角A、B、C的对边分别为、b 、c,且满足。
(Ⅰ)求角B的值;
(Ⅱ)设,当取到最大值时,求角A、角C的值。
(本题满分12分)
为调查某工厂工人生产某种产品的能力,随机抽查了一些工人某天生产产品的数量,产品数量的分组区间为[45,55), [55,65), [65,75), [75,85), [85,95),由此得到频率分布直方图如图所示,保存中不慎丢失一些数据,但已知第一组 ([45,55) ]有4人;
(Ⅰ)求被抽查的工人总人数n及图中所示m为多少;
(Ⅱ)求这些工人中一天生产该产品数量在[55,75)之间的人数是多少。
(本题满分12分)
如图,四棱锥P—ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点。
(1)求证:CD⊥AE;
(2)求证:PD⊥面ABE。
(本题满分12分)
已知数列的前 n项和为,满足,且.
(Ⅰ)求,;
(Ⅱ)若,求证:数列是等比数列。
(Ⅲ)若 , 求数列的前n项和。
(本题满分12分)
已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆右顶点到直线的距离为,离心率
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知A为椭圆与y轴负半轴的交点,设直线:,是否存在实数m,使直线与(Ⅰ)中的椭圆有两个不同的交点M、N,是∣AM∣=∣AN∣,若存在,求出 m的值;若不存在,请说明理由。