[江苏]2012届江苏省无锡市华仕初中中考模拟(5)数学卷
下列运算正确的是························ (▲ )
A.a+a=2a2 | B.a2·a=2a2 | C.(-ab)2=2ab2 | D.(2a)2 ÷a=4a |
已知⊙O1与⊙O2相切,⊙O1的半径为3cm,⊙O2的半径为2cm,则O1O2的长是(▲)
A.1 cm | B.5 cm | C.1 cm或5 cm | D.0.5cm或2.5cm |
小丽在清点本班为青海玉树地震灾区的捐款时发现,全班同学捐款的钞票情况如下:l00元的5 张,50元的l0张,l0元的20张,5元的l0张.在这些不同面额的钞票中,众数是(▲)元的钞票.
A.5 | B.10 | C.20 | D.100 |
如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图为 ( ▲ )
下列命题正确的是( ▲ )
A.两个等边三角形全等 |
B.各有一个角是40°的两个等腰三角形全等 |
C.对角线互相垂直平分的四边形是菱形 |
D.对角线互相垂直且相等的四边形是正方形 |
如图a是长方形纸带,,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的的度数是 (▲ )
A.110° | B.120° | C.140° | D.150° |
如图,A、B是第二象限内双曲线上的点, A、B两点的横坐标分别是a、2a,线段AB的延长线交x轴于点C,若S△AOC=6.则k的值为 ( ▲ ).
A 6 B. -6 C. 4 D. -4
上海世博会主题馆屋面太阳能板面积达3万多平方米,年发电量可达280万度.这里的280万度用科学记数法表示(保留三个有效数字)为___▲_____________度.
如图,△ABC内接于⊙O,AC是⊙O的直径,∠ACB=500,点D 一点,则∠D=____▲ ____
如图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(―1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,……,依此规律跳动下去,点P第100次跳动至点P100的坐标是 。
如图,在梯形ABCD中,AD∥BC,∠D=90°,BE⊥AC,E为垂足, AC=BC.
⑴求证:CD=BE.⑵若AD=3,DC=4,求AE.
如图,A、B两个转盘均被平均分成三个扇形,分别转动A盘、B盘各一次.转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止.小敏分别转动两个转盘, 当两个转盘停止后,小敏把A转盘指针所指区域内的数字记为,B转盘指针所指区域内的数字记为.这样就确定了点P的坐标.(1)用列表或画树状图的方法写出点P的所有可能坐标;(2)求点P落在坐标轴上的概率.
联合国规定每年的6月5日是“世界环境日”,为配合今年的“世界环境日”宣传活动,某校课外活动小组对全校师生开展了以“爱护环境,从我做起”为主题的问卷调查活动,将调查结果分析整理后,制成了下面的两个统计图.
其中:A:能将垃圾放到规定的地方,而且还会考虑垃圾的分类
B: 能将垃圾放到规定的地方,但不会考虑垃圾的分类
C:偶尔会将垃圾放到规定的地方
D:随手乱扔垃圾
根据以上信息回答下列问题:
(1)该校课外活动小组共调查了多少人?
并补全下面的条形统计图;
(2)如果该校共有师生2400人,
那么随手乱扔垃圾的约有多少人?
如图所示,山坡上有一棵与水平面垂直的大树,一场台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面.已知山坡的坡角,量得树干倾斜角,大树被折断部分和坡面所成的角.
(1)求的度数;
(2)求这棵大树折断前的高度?(结果精确到个位,参考数据:,,).
学校选修课上木工制作小组决定制作等腰三角形积木,现从某家具厂找来如图所示的梯形边角余料(单位:cm).且制作方案如下:
(1)三角形中至少有一边长为10 cm;
(2)三角形中至少有一边上的高为8 cm请你画出三种不同的分割线,并求出相应图形面积.(要求画出的三个等腰三角形的面积不等)
如图,在平面直角坐标系中,顶点为(,)的抛物线交轴于点,交轴于,两点(点在点的左侧), 已知点坐标为(,)。
(1)求此抛物线的解析式;
(2)过点作线段的垂线交抛物线于点, 如果以点为圆心的圆与直线 相切,请判断抛物线的对称轴与⊙有怎样的位置关系,并给出证明;
(3)已知点是抛物线上的一个动点,且位于,两点之间,过点作轴的平行线与交于点问:当点运动到什么位置时,线段的长度最大?并求出此时△的面积。
如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.
(1)求直线AC的解析式;
(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);
(3)在(2)的条件下,当 t为何值时,∠MPB与∠BCO互为余角.
甲船从A港出发顺流匀速驶向B港,行至某处,发现船上一救生圈不知何时落入水中,立刻原路返回,找到救生圈后,继续顺流驶向B港.乙船从B港出发逆流匀速驶向A港.已知救生圈漂流的速度和水流速度相同;甲、乙两船在静水中的速度相同.甲、乙两船到A港的距离y1、y2(km)与行驶时间x(h)之间的函数图象如图所示.
(1)写出乙船在逆流中行驶的速度(2)求甲船在逆流中行驶的路程.
(3)求甲船到A港的距离y1与行驶时间x之间的函数关系式
(4)求救生圈落入水中时,甲船到A港的距离.
【参考公式:船顺流航行的速度船在静水中航行的速度+水流速度,船逆流航行的速度船在静水中航行的速度水流速度.】