2022年中考数学专题:概率初步(二)
以下转盘分别被分成2个、4个、5个、6个面积相等的扇形,任意转动这4个转盘各1次.已知某转盘停止转动时,指针落在阴影区域的概率是 ,则对应的转盘是
A. | B. | C. | D. |
如图,有4张形状大小质地均相同的卡片,正面印有速度滑冰、冰球、单板滑雪、冰壶四种不同的图案,背面完全相同,现将这4张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是冰壶项目图案的概率是
A. |
|
B. |
|
C. |
|
D. |
|
一个不透明的盒子中装有2个黑球和4个白球,这些球除颜色外其他均相同,从中任意摸出3个球,下列事件为必然事件的是
A. |
至少有1个白球 |
B. |
至少有2个白球 |
C. |
至少有1个黑球 |
D. |
至少有2个黑球 |
在一个不透明的袋中装有5个球,其中2个红球,3个白球,这些球除颜色外无其他差别,从中随机摸出1个球,摸出红球的概率是
A. |
|
B. |
|
C. |
|
D. |
|
下列说法正确的是
A. |
一个不透明的口袋中有3个白球和2个红球(每个球除颜色外都相同),则从中任意摸出一个球是红球的概率为 |
B. |
一个抽奖活动的中奖概率为 ,则抽奖2次就必有1次中奖 |
C. |
统计甲,乙两名同学在若干次检测中的数学成绩发现: , ,说明甲的数学成绩比乙的数学成绩稳定 |
D. |
要了解一个班有多少同学知道"杂交水稻之父"袁隆平的事迹,宜采用普查的调查方式 |
一个布袋里放有3个红球和2个白球,它们除颜色外其余都相同.从布袋中任意摸出1个球,摸到白球的概率是
A. |
|
B. |
|
C. |
|
D. |
|
"一个不透明的袋中装有三个球,分别标有1,2, 这三个号码,这些球除号码外都相同,搅匀后任意摸出一个球,摸出球上的号码小于5"是必然事件,则 的值可能是
A. |
4 |
B. |
5 |
C. |
6 |
D. |
7 |
一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上,每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是 .
某单位组织抽奖活动,共准备了150张奖券,设一等奖5个,二等奖20个,三等奖80个.已知每张奖券获奖的可能性相同,则1张奖券中一等奖的概率是 .
一个不透明的袋子中装有5个小球,其中3个白球,2个黑球,这些小球除颜色外无其它差别,从袋子中随机摸出一个小球,则摸出的小球是白球的概率为 .
看了《田忌赛马》故事后,小杨用数学模型来分析:齐王与田忌的上中下三个等级的三匹马记分如表,每匹马只赛一场,两数相比,大数为胜,三场两胜则赢.已知齐王的三匹马出场顺序为10,8,6.若田忌的三匹马随机出场,则田忌能赢得比赛的概率为 .
马匹 姓名 |
下等马 |
中等马 |
上等马 |
齐王 |
6 |
8 |
10 |
田忌 |
5 |
7 |
9 |
一个不透明的口袋中装有标号为1、2、3的三个小球,这些小球除标号外完全相同,随机摸出1个小球,然后把小球重新放回口袋摇匀,再随机摸出1个小球,那么两次摸出小球上的数字之和是偶数的概率是 .
某商场举办有奖销售活动,每张奖券被抽中的可能性相同,若以每1000张奖券为一个开奖单位,设5个一等奖,15个二等奖,不设其他奖项,则只抽1张奖券恰好中奖的概率是 .
社团课上,同学们进行了“摸球游戏”:在一个不透明的盒子里装有几十个除颜色不同外其余均相同的黑、白两种球,将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程.整理数据后,制作了“摸出黑球的频率”与“摸球的总次数”的关系图象如图所示,经分析可以推断盒子里个数比较多的是 .(填“黑球”或“白球”
某中学为组织学生参加庆祝中国共产党成立100周年书画展评活动,全校征集学生书画作品.王老师从全校20个班中随机抽取了 , , , 四个班,对征集作品进行了数量分析统计,绘制了如下两幅不完整的统计图.
(1)王老师采取的调查方式是 (填"普查"或"抽样调查" ,王老师所调查的4个班共征集到作品 件,并补全条形统计图;
(2)在扇形统计图中,表示 班的扇形圆心角的度数为 ;
(3)如果全校参展作品中有4件获得一等奖,其中有1件作品的作者是男生,3件作品的作者是女生.现要从获得一等奖的作者中随机抽取两人去参加学校的总结表彰座谈会,求恰好抽中一男一女的概率.(要求用树状图或列表法写出分析过程)
为庆祝中国共产党建党100周年,某校开展了"党在我心中"党史知识竞赛,竞赛得分为整数,王老师为了解竞赛情况,随机抽取了部分参赛学生的得分并进行整理,绘制成不完整的统计图表.
组别 |
成绩 (分 |
频数 |
|
|
6 |
|
|
14 |
|
|
|
|
|
|
|
|
|
请你根据统计图表提供的信息解答下列问题:
(1)上表中的 , , .
(2)这次抽样调查的成绩的中位数落在哪个组?请补全频数分布直方图.
(3)已知该校有1000名学生参赛,请估计竞赛成绩在90分以上的学生有多少人?
(4)现要从 组随机抽取两名学生参加上级部门组织的党史知识竞赛, 组中的小丽和小洁是一对好朋友,请用列表或画树状图的方法求出恰好抽到小丽和小洁的概率.
近日,教育部印发了《关于举办第三届中华经典诵写讲大赛的通知》,本届大赛以“传承中华经典,庆祝建党百年”为主题,分为“诵读中国”经典诵读,“诗教中国”诗词讲解,“笔墨中国”汉字书写,“印记中国”印章篆刻比赛四类(依次记为 , , , .为了解同学们参与这四类比赛的意向,某校学生会从有意向参与比赛的学生中随机抽取若干名学生进行了问卷调查(调查问卷如图所示),所有问卷全部收回,并将调查结果绘制成统计图和统计表(均不完整).
“中华经典诵写讲大赛”参赛意向调查问卷 请在下列选项中选择您有参赛意向的选项,在其后“ ”内打“ ”,非常感谢您的合作. .“诵读中国”经典诵读 .“诗教中国”诗词讲解 .“笔墨中国”汉字书写 .“印记中国”印章篆刻 |
请根据图表提供的信息,解答下列问题:
(1)参与本次问卷调查的总人数为 人,统计表中 的百分比 为 ;
(2)请补全统计图;
(3)小华想用扇形统计图反映有意向参与各类比赛的人数占被调查总人数的百分比,是否可行?若可行,求出表示 类比赛的扇形圆心角的度数;若不可行,请说明理由.
(4)学校“诗教中国”诗词讲解大赛初赛的规则是:组委会提供“春”“夏”“秋”“冬”四组题目(依次记为 , , , ,由电脑随机给每位参赛选手派发一组,选手根据题目要求进行诗词讲解,请用列表或画树状图的方法求甲,乙两名选手抽到的题目在同一组的概率.
为了弘扬爱国主义精神,某校组织了"共和国成就"知识竞赛,将成绩分为: (优秀)、 (良好)、 (合格)、 (不合格)四个等级.小李随机调查了部分同学的竞赛成绩,绘制了如图统计图.
(1)本次抽样调查的样本容量是 ,请补全条形统计图;
(2)已知调查对象中只有两位女生竞赛成绩不合格,小李准备随机回访两位竞赛成绩不合格的同学,请用树状图或列表法求出恰好回访到一男一女的概率;
(3)该校共有2000名学生,请你估计该校竞赛成绩"优秀"的学生人数.
某学校九年级有12个班,每班50名学生,为了调查该校九年级学生平均每天的睡眠时间,准备从12个班里抽取50名学生作为一个样本进行分析,并规定如下:设每个学生平均每天的睡眠时间为 (单位,小时),将收集到的学生平均每天睡眠时间按 、 、 分为三类进行分析.
(1)下列抽取方法具有代表性的是 .
.随机抽取一个班的学生
.从12个班中,随机抽取50名学生
.随机抽取50名男生
.随机抽取50名女生
(2)由上述具有代表性的抽取方法抽取50名学生,平均每天的睡眠时间数据如表:
睡眠时间 (小时) |
5 |
5.5 |
6 |
6.5 |
7 |
7.5 |
8 |
8.5 |
人数(人 |
1 |
1 |
2 |
10 |
15 |
9 |
10 |
2 |
①这组数据的众数和中位数分别是 , ;
②估计九年级学生平均每天睡眼时间 的人数大约为多少;
(3)从样本中学生平均每天眠时间 的4个学生里,随机抽取2人,画树状图或列表,求抽得2人平均每天睡眠时间都是6小时的概率.
为迎接建党100周年,某校组织学生开展了党史知识竞赛活动.竞赛项目有: .回顾重要事件; .列举革命先烈; .讲述英雄故事; .歌颂时代精神.学校要求学生全员参加且每人只能参加一项,为了解学生参加竞赛情况,随机调查了部分学生,并将调查结果绘制成如下两幅不完整的统计图,请你根据图中信息解答下列问题:
(1)本次被调查的学生共有 名;
(2)在扇形统计图中" 项目"所对应的扇形圆心角的度数为 ,并把条形统计图补充完整;
(3)从本次被调查的小华、小光、小艳、小萍这四名学生中,随机抽出2名同学去做宣讲员,请用列表或画树状图的方法求出恰好小华和小艳被抽中的概率.
某市体育中考自选项目有乒乓球、篮球和羽毛球,每个考生任选一项作为自选考试项目.
(1)求考生小红和小强自选项目相同的概率;
(2)除自选项目之外,长跑和掷实心球为必考项目.小红和小强的体育中考各项成绩(百分制)的统计图表如下:
考生 |
自选项目 |
长跑 |
掷实心球 |
小红 |
95 |
90 |
95 |
小强 |
90 |
95 |
95 |
①补全条形统计图.
②如果体育中考按自选项目占 、长跑占 、掷实心球占 计算成绩(百分制),分别计算小红和小强的体育中考成绩.
从一副普通的扑克牌中取出四张牌,它们的牌面数字分别为2,3,3,6.
(1)将这四张扑克牌背面朝上,洗匀,从中随机抽取一张,则抽取的这张牌的牌面数字是3的概率为 ;
(2)将这四张扑克牌背面朝上,洗匀.从中随机抽取一张,不放回,再从剩余的三张牌中随机抽取一张.请根据画树状图或列表的方法,求抽取的这两张牌的牌面数字恰好相同的概率.
某校开展主题为"防疫常识知多少"的调查活动,抽取了部分学生进行调查,调查问卷设置了 :非常了解、 :比较了解、 :基本了解、 :不太了解四个等级,要求每个学生填且只能填其中的一个等级,采取随机抽样的方式,并根据调查结果绘制成如图所示不完整的频数分布表和频数分布直方图,根据以上信息回答下列问题:
等级 |
频数 |
频率 |
|
20 |
0.4 |
|
15 |
|
|
10 |
0.2 |
|
|
0.1 |
(1)频数分布表中 , ,将频数分布直方图补充完整;
(2)若该校有学生1000人,请根据抽样调查结果估算该校"非常了解"和"比较了解"防疫常识的学生共有多少人?
(3)在"非常了解"防疫常识的学生中,某班有5个学生,其中3男2女,计划在这5个学生中随机抽选两个加入防疫志愿者团队,请用列表或画树状图的方法求所选两个学生中至少有一个女生的概率.