2017年河北省中考数学试卷
图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是
A. |
① |
B. |
② |
C. |
③ |
D. |
④ |
若 的每条边长增加各自的 得△ ,则 的度数与其对应角 的度数相比
A. |
增加了 |
B. |
减少了 |
C. |
增加了 |
D. |
没有改变 |
求证:菱形的两条对角线互相垂直.
已知:如图,四边形 是菱形,对角线 , 交于点 .
求证: .
以下是排乱的证明过程:
①又 ;
② ,即 ;
③ 四边形 是菱形;
④ .
证明步骤正确的顺序是
A. |
③ ② ① ④ |
B. |
③ ④ ① ② |
C. |
① ② ④ ③ |
D. |
① ④ ③ ② |
如图,码头 在码头 的正西方向,甲、乙两船分别从 , 同时出发,并以等速驶向某海域,甲的航向是北偏东 ,为避免行进中甲、乙相撞,则乙的航向不能是
A. |
北偏东 |
B. |
北偏西 |
C. |
北偏东 |
D. |
北偏西 |
如图是边长为 的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位: 不正确的是
A. | B. | ||
C. | D. |
甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,
甲组12户家庭用水量统计表
用水量(吨 |
4 |
5 |
6 |
9 |
户数 |
4 |
5 |
2 |
1 |
比较5月份两组家庭用水量的中位数,下列说法正确的是
A. |
甲组比乙组大 |
B. |
甲、乙两组相同 |
C. |
乙组比甲组大 |
D. |
无法判断 |
如图,若抛物线 与 轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为 ,则反比例函数 的图象是
A. | B. | ||
C. | D. |
已知正方形 和正六边形 边长均为1,把正方形放在正六边形中,使 边与 边重合,如图所示,按下列步骤操作:
将正方形在正六边形中绕点 顺时针旋转,使 边与 边重合,完成第一次旋转;再绕点 顺时针旋转,使 边与 边重合,完成第二次旋转; 在这样连续6次旋转的过程中,点 , 间的距离可能是
A. |
1.4 |
B. |
1.1 |
C. |
0.8 |
D. |
0.5 |
如图,,两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点,连接,,分别延长到点,,使,,测得,则,间的距离为 .
在一条不完整的数轴上从左到右有点,,,其中,,如图所示,设点,,所对应数的和是.
(1)若以为原点,写出点,所对应的数,并计算的值;若以为原点,又是多少?
(2)若原点在图中数轴上点的右边,且,求.
编号为号的5名学生进行定点投篮,规定每人投5次,每命中1次记1分,没有命中记0分,如图是根据他们各自的累积得分绘制的条形统计图.之后来了第6号学生也按同样记分规定投了5次,其命中率为.
(1)求第6号学生的积分,并将图增补为这6名学生积分的条形统计图;
(2)在这6名学生中,随机选一名学生,求选上命中率高于的学生的概率;
(3)最后,又来了第7号学生,也按同样记分规定投了5次,这时7名学生积分的众数仍是前6名学生积分的众数,求这个众数,以及第7号学生的积分.
发现 任意五个连续整数的平方和是5的倍数.
验证 (1)的结果是5的几倍?
(2)设五个连续整数的中间一个为,写出它们的平方和,并说明是5的倍数.
延伸 任意三个连续整数的平方和被3除的余数是几呢?请写出理由.
如图,,为中点,点在线段上(不与点,重合),将绕点逆时针旋转后得到扇形,,分别切优弧于点,,且点,在异侧,连接.
(1)求证:;
(2)当时,求的长(结果保留;
(3)若的外心在扇形的内部,求的取值范围.
如图,直角坐标系中,,直线与轴交于点,直线与轴及直线分别交于点,,点,关于轴对称,连接.
(1)求点,的坐标及直线的解析式;
(2)设面积的和,求的值;
(3)在求(2)中时,嘉琪有个想法:“将沿轴翻折到的位置,而与四边形拼接后可看成,这样求便转化为直接求的面积不更快捷吗?”但大家经反复演算,发现,请通过计算解释他的想法错在哪里.
平面内,如图,在中,,,,点为边上任意点,连接,将绕点逆时针旋转得到线段.
(1)当时,求的大小;
(2)当时,求点与点间的距离(结果保留根号);
(3)若点恰好落在的边所在的直线上,直接写出旋转到所扫过的面积.(结果保留