山东省济南市中考模拟数学试卷
请将数据450亿元用科学记数法表示为(单位:元)( )
A.4.50×102 | B.0.45×103 | C.4.50×1010 | D.0.45×1011 |
如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,则∠2的度数为( )
A.35° | B.45° | C.55° | D.125° |
在平面中,下列命题为真命题的是( )
A.四边相等的四边形是正方形 |
B.对角线相等的四边形是菱形 |
C.四个角相等的四边形是矩形 |
D.对角线互相垂直的四边形是平行四边形 |
我市某中学九年级(1)班为开展“阳光体育运动”,决定自筹资金为班级购买体育器材,全班50名同学捐款情况如下表:
问该班同学捐款金额的众数和中位数分别是( )
A.13,11 | B.25,30 |
C.20,25 | D.25,20 |
如图,AB是⊙O的直径,点C在⊙O上,若∠A=40°,则∠B的度数为( )
A.80° | B.60° | C.50° | D.40° |
如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是( )
A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF
如图,在△OAB中,C是AB的中点,反比例函数(k>0)在第一象限的图象经过A、C两点,若△OAB面积为6,则k的值为( )
A.2 B.4 C.8 D.16
已知抛物线的部分图象如图所示,若y<0,则x的取值范围是( )
A.﹣1<x<3 | B.﹣1<x<4 |
C.x<﹣1或 x>4 | D.x<﹣1或 x>3 |
如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为( )
A.1 | B. | C.2 | D. |
如图,二次函数()的图象与x轴交于A、B两点,与y轴交于点C,点B坐标(﹣1,0),且对称轴是x=1.下面的四个结论:①OA=3;②a+b+c<0;③ac>0;④>0.
其中正确的结论是 .
如图,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.
求证:∠A=∠D.
如图,小方在五月一日假期中到郊外放风筝,风筝飞到C 处时的线长为20米,此时小方正好站在A处,并测得∠CBD=60°,牵引底端B离地面1.5米,求此时风筝离地面的高度(结果精确到个位)
学校组织各班开展“阳光体育”活动,某班体育委员第一次到时商店购买了5个毽子和8根跳绳,花费34元,第二次又去购买了3个毽子和4根跳绳,花费18元,求每个毽子和每个跳绳各多少元?
在一个不透明的盒子里,装有四个分别标有数字1,﹣2,﹣3,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y.
(1)小明抽到的数字是负数的概率是 .
(2)用列表法或画树状图表示出(x,y)的所有可能出现的结果;
(3)求小明、小华各取一次小球所确定的点(x,y)落在第二象限的概率.
如图,反比例函数(x>0)的图象经过线段OA的端点A,O为原点,作AB⊥x轴于点B,点B的坐标为(2,0),tan∠AOB=.
(1)求k的值;
(2)将线段AB沿x轴正方向平移到线段DC的位置,反比例函数(x>0)的图象恰好经过DC的中点E,求直线AE的函数表达式;
(3)若直线AE与x轴交于点M、与y轴交于点N,请你探索线段AN与线段ME的大小关系,写出你的结论并说明理由.
如图1,正方形OABC与正方形ODEF放置在直线l上,连结AD、CF,此时AD=CF.AD⊥CF成立.
(1)正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?若成立,请证明;若不成立,请说明理由.
(2)正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,求证:AD⊥CF.
(3)在(2)小题的条件下,AD与OC的交点为G,当AO=3,OD=时,求线段CG的长.